/* $NetBSD: sha2.c,v 1.5 2020/05/25 20:47:20 christos Exp $ */ /* * Copyright (C) 2005-2007, 2009, 2011, 2012 Internet Systems Consortium, Inc. ("ISC") * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /* Id */ /* $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $ */ /* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */ /* * sha2.c * * Version 1.0.0beta1 * * Written by Aaron D. Gifford * * Copyright 2000 Aaron D. Gifford. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include #include #include #ifdef ISC_PLATFORM_OPENSSLHASH void isc_sha224_init(isc_sha224_t *context) { if (context == (isc_sha224_t *)0) { return; } EVP_DigestInit(context, EVP_sha224()); } void isc_sha224_invalidate(isc_sha224_t *context) { EVP_MD_CTX_cleanup(context); } void isc_sha224_update(isc_sha224_t *context, const isc_uint8_t* data, size_t len) { if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha224_t *)0 && data != (isc_uint8_t*)0); EVP_DigestUpdate(context, (const void *) data, len); } void isc_sha224_final(isc_uint8_t digest[], isc_sha224_t *context) { /* Sanity check: */ REQUIRE(context != (isc_sha224_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { EVP_DigestFinal(context, digest, NULL); } else { EVP_MD_CTX_cleanup(context); } } void isc_sha256_init(isc_sha256_t *context) { if (context == (isc_sha256_t *)0) { return; } EVP_DigestInit(context, EVP_sha256()); } void isc_sha256_invalidate(isc_sha256_t *context) { EVP_MD_CTX_cleanup(context); } void isc_sha256_update(isc_sha256_t *context, const isc_uint8_t *data, size_t len) { if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha256_t *)0 && data != (isc_uint8_t*)0); EVP_DigestUpdate(context, (const void *) data, len); } void isc_sha256_final(isc_uint8_t digest[], isc_sha256_t *context) { /* Sanity check: */ REQUIRE(context != (isc_sha256_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { EVP_DigestFinal(context, digest, NULL); } else { EVP_MD_CTX_cleanup(context); } } void isc_sha512_init(isc_sha512_t *context) { if (context == (isc_sha512_t *)0) { return; } EVP_DigestInit(context, EVP_sha512()); } void isc_sha512_invalidate(isc_sha512_t *context) { EVP_MD_CTX_cleanup(context); } void isc_sha512_update(isc_sha512_t *context, const isc_uint8_t *data, size_t len) { if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0); EVP_DigestUpdate(context, (const void *) data, len); } void isc_sha512_final(isc_uint8_t digest[], isc_sha512_t *context) { /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { EVP_DigestFinal(context, digest, NULL); } else { EVP_MD_CTX_cleanup(context); } } void isc_sha384_init(isc_sha384_t *context) { if (context == (isc_sha384_t *)0) { return; } EVP_DigestInit(context, EVP_sha384()); } void isc_sha384_invalidate(isc_sha384_t *context) { EVP_MD_CTX_cleanup(context); } void isc_sha384_update(isc_sha384_t *context, const isc_uint8_t* data, size_t len) { if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0); EVP_DigestUpdate(context, (const void *) data, len); } void isc_sha384_final(isc_uint8_t digest[], isc_sha384_t *context) { /* Sanity check: */ REQUIRE(context != (isc_sha384_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { EVP_DigestFinal(context, digest, NULL); } else { EVP_MD_CTX_cleanup(context); } } #else /* * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * \#define ISC_SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Machine Architecture Definitions *****************/ /* * BYTE_ORDER NOTE: * * Please make sure that your system defines BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are * equivalent. * * If your system does not define the above, then you can do so by * hand like this: * * \#define LITTLE_ENDIAN 1234 * \#define BIG_ENDIAN 4321 * * And for little-endian machines, add: * * \#define BYTE_ORDER LITTLE_ENDIAN * * Or for big-endian machines: * * \#define BYTE_ORDER BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including (which in turn includes * where the appropriate definitions are actually * made). */ #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) #ifndef BYTE_ORDER #ifndef BIG_ENDIAN #define BIG_ENDIAN 4321 #endif #ifndef LITTLE_ENDIAN #define LITTLE_ENDIAN 1234 #endif #ifdef WORDS_BIGENDIAN #define BYTE_ORDER BIG_ENDIAN #else #define BYTE_ORDER LITTLE_ENDIAN #endif #else #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN #endif #endif /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define ISC_SHA256_SHORT_BLOCK_LENGTH (ISC_SHA256_BLOCK_LENGTH - 8) #define ISC_SHA384_SHORT_BLOCK_LENGTH (ISC_SHA384_BLOCK_LENGTH - 16) #define ISC_SHA512_SHORT_BLOCK_LENGTH (ISC_SHA512_BLOCK_LENGTH - 16) /*** ENDIAN REVERSAL MACROS *******************************************/ #if BYTE_ORDER == LITTLE_ENDIAN #define REVERSE32(w,x) { \ isc_uint32_t tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #ifdef WIN32 #define REVERSE64(w,x) { \ isc_uint64_t tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffUL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \ ((tmp & 0x0000ffff0000ffffUL) << 16); \ } #else #define REVERSE64(w,x) { \ isc_uint64_t tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \ } #endif #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (isc_uint64_t)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ void isc_sha512_last(isc_sha512_t *); void isc_sha256_transform(isc_sha256_t *, const isc_uint32_t*); void isc_sha512_transform(isc_sha512_t *, const isc_uint64_t*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-224 and SHA-256: */ static const isc_uint32_t K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-224: */ static const isc_uint32_t sha224_initial_hash_value[8] = { 0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL, 0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL }; /* Initial hash value H for SHA-256: */ static const isc_uint32_t sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; #ifdef WIN32 /* Hash constant words K for SHA-384 and SHA-512: */ static const isc_uint64_t K512[80] = { 0x428a2f98d728ae22UL, 0x7137449123ef65cdUL, 0xb5c0fbcfec4d3b2fUL, 0xe9b5dba58189dbbcUL, 0x3956c25bf348b538UL, 0x59f111f1b605d019UL, 0x923f82a4af194f9bUL, 0xab1c5ed5da6d8118UL, 0xd807aa98a3030242UL, 0x12835b0145706fbeUL, 0x243185be4ee4b28cUL, 0x550c7dc3d5ffb4e2UL, 0x72be5d74f27b896fUL, 0x80deb1fe3b1696b1UL, 0x9bdc06a725c71235UL, 0xc19bf174cf692694UL, 0xe49b69c19ef14ad2UL, 0xefbe4786384f25e3UL, 0x0fc19dc68b8cd5b5UL, 0x240ca1cc77ac9c65UL, 0x2de92c6f592b0275UL, 0x4a7484aa6ea6e483UL, 0x5cb0a9dcbd41fbd4UL, 0x76f988da831153b5UL, 0x983e5152ee66dfabUL, 0xa831c66d2db43210UL, 0xb00327c898fb213fUL, 0xbf597fc7beef0ee4UL, 0xc6e00bf33da88fc2UL, 0xd5a79147930aa725UL, 0x06ca6351e003826fUL, 0x142929670a0e6e70UL, 0x27b70a8546d22ffcUL, 0x2e1b21385c26c926UL, 0x4d2c6dfc5ac42aedUL, 0x53380d139d95b3dfUL, 0x650a73548baf63deUL, 0x766a0abb3c77b2a8UL, 0x81c2c92e47edaee6UL, 0x92722c851482353bUL, 0xa2bfe8a14cf10364UL, 0xa81a664bbc423001UL, 0xc24b8b70d0f89791UL, 0xc76c51a30654be30UL, 0xd192e819d6ef5218UL, 0xd69906245565a910UL, 0xf40e35855771202aUL, 0x106aa07032bbd1b8UL, 0x19a4c116b8d2d0c8UL, 0x1e376c085141ab53UL, 0x2748774cdf8eeb99UL, 0x34b0bcb5e19b48a8UL, 0x391c0cb3c5c95a63UL, 0x4ed8aa4ae3418acbUL, 0x5b9cca4f7763e373UL, 0x682e6ff3d6b2b8a3UL, 0x748f82ee5defb2fcUL, 0x78a5636f43172f60UL, 0x84c87814a1f0ab72UL, 0x8cc702081a6439ecUL, 0x90befffa23631e28UL, 0xa4506cebde82bde9UL, 0xbef9a3f7b2c67915UL, 0xc67178f2e372532bUL, 0xca273eceea26619cUL, 0xd186b8c721c0c207UL, 0xeada7dd6cde0eb1eUL, 0xf57d4f7fee6ed178UL, 0x06f067aa72176fbaUL, 0x0a637dc5a2c898a6UL, 0x113f9804bef90daeUL, 0x1b710b35131c471bUL, 0x28db77f523047d84UL, 0x32caab7b40c72493UL, 0x3c9ebe0a15c9bebcUL, 0x431d67c49c100d4cUL, 0x4cc5d4becb3e42b6UL, 0x597f299cfc657e2aUL, 0x5fcb6fab3ad6faecUL, 0x6c44198c4a475817UL }; /* Initial hash value H for SHA-384: */ static const isc_uint64_t sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8UL, 0x629a292a367cd507UL, 0x9159015a3070dd17UL, 0x152fecd8f70e5939UL, 0x67332667ffc00b31UL, 0x8eb44a8768581511UL, 0xdb0c2e0d64f98fa7UL, 0x47b5481dbefa4fa4UL }; /* Initial hash value H for SHA-512: */ static const isc_uint64_t sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908U, 0xbb67ae8584caa73bUL, 0x3c6ef372fe94f82bUL, 0xa54ff53a5f1d36f1UL, 0x510e527fade682d1UL, 0x9b05688c2b3e6c1fUL, 0x1f83d9abfb41bd6bUL, 0x5be0cd19137e2179UL }; #else /* Hash constant words K for SHA-384 and SHA-512: */ static const isc_uint64_t K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Initial hash value H for SHA-384: */ static const isc_uint64_t sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL }; /* Initial hash value H for SHA-512: */ static const isc_uint64_t sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; #endif /*** SHA-224: *********************************************************/ void isc_sha224_init(isc_sha224_t *context) { if (context == (isc_sha256_t *)0) { return; } memcpy(context->state, sha224_initial_hash_value, ISC_SHA256_DIGESTLENGTH); memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH); context->bitcount = 0; } void isc_sha224_invalidate(isc_sha224_t *context) { memset(context, 0, sizeof(isc_sha224_t)); } void isc_sha224_update(isc_sha224_t *context, const isc_uint8_t* data, size_t len) { isc_sha256_update((isc_sha256_t *)context, data, len); } void isc_sha224_final(isc_uint8_t digest[], isc_sha224_t *context) { isc_uint8_t sha256_digest[ISC_SHA256_DIGESTLENGTH]; isc_sha256_final(sha256_digest, (isc_sha256_t *)context); memcpy(digest, sha256_digest, ISC_SHA224_DIGESTLENGTH); memset(sha256_digest, 0, ISC_SHA256_DIGESTLENGTH); } /*** SHA-256: *********************************************************/ void isc_sha256_init(isc_sha256_t *context) { if (context == (isc_sha256_t *)0) { return; } memcpy(context->state, sha256_initial_hash_value, ISC_SHA256_DIGESTLENGTH); memset(context->buffer, 0, ISC_SHA256_BLOCK_LENGTH); context->bitcount = 0; } void isc_sha256_invalidate(isc_sha256_t *context) { memset(context, 0, sizeof(isc_sha256_t)); } #ifdef ISC_SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #if BYTE_ORDER == LITTLE_ENDIAN #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE32(*data++, W256[j]); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #else /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + (W256[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #endif /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ void isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) { isc_uint32_t a, b, c, d, e, f, g, h, s0, s1; isc_uint32_t T1, *W256; int j; W256 = (isc_uint32_t*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; /* Avoid compiler warnings */ POST(a); POST(b); POST(c); POST(d); POST(e); POST(f); POST(g); POST(h); POST(T1); } #else /* ISC_SHA2_UNROLL_TRANSFORM */ void isc_sha256_transform(isc_sha256_t *context, const isc_uint32_t* data) { isc_uint32_t a, b, c, d, e, f, g, h, s0, s1; isc_uint32_t T1, T2, *W256; int j; W256 = (isc_uint32_t*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #if BYTE_ORDER == LITTLE_ENDIAN /* Copy data while converting to host byte order */ REVERSE32(*data++,W256[j]); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; #else /* BYTE_ORDER == LITTLE_ENDIAN */ /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; /* Avoid compiler warnings */ POST(a); POST(b); POST(c); POST(d); POST(e); POST(f); POST(g); POST(h); POST(T1); POST(T2); } #endif /* ISC_SHA2_UNROLL_TRANSFORM */ void isc_sha256_update(isc_sha256_t *context, const isc_uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha256_t *)0 && data != (isc_uint8_t*)0); usedspace = (unsigned int)((context->bitcount >> 3) % ISC_SHA256_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = ISC_SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; isc_sha256_transform(context, (isc_uint32_t*)context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; /* Avoid compiler warnings: */ POST(usedspace); POST(freespace); return; } } while (len >= ISC_SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ memcpy(context->buffer, data, ISC_SHA256_BLOCK_LENGTH); isc_sha256_transform(context, (isc_uint32_t*)context->buffer); context->bitcount += ISC_SHA256_BLOCK_LENGTH << 3; len -= ISC_SHA256_BLOCK_LENGTH; data += ISC_SHA256_BLOCK_LENGTH; } if (len > 0U) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; /* Avoid compiler warnings: */ POST(usedspace); POST(freespace); } void isc_sha256_final(isc_uint8_t digest[], isc_sha256_t *context) { isc_uint32_t *d = (isc_uint32_t*)digest; unsigned int usedspace; /* Sanity check: */ REQUIRE(context != (isc_sha256_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { usedspace = (unsigned int)((context->bitcount >> 3) % ISC_SHA256_BLOCK_LENGTH); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount,context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= ISC_SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, ISC_SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < ISC_SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, ISC_SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ isc_sha256_transform(context, (isc_uint32_t*)context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, ISC_SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, ISC_SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(isc_uint64_t*)&context->buffer[ISC_SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; /* Final transform: */ isc_sha256_transform(context, (isc_uint32_t*)context->buffer); #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else memcpy(d, context->state, ISC_SHA256_DIGESTLENGTH); #endif } /* Clean up state data: */ memset(context, 0, sizeof(*context)); usedspace = 0; POST(usedspace); } /*** SHA-512: *********************************************************/ void isc_sha512_init(isc_sha512_t *context) { if (context == (isc_sha512_t *)0) { return; } memcpy(context->state, sha512_initial_hash_value, ISC_SHA512_DIGESTLENGTH); memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } void isc_sha512_invalidate(isc_sha512_t *context) { memset(context, 0, sizeof(isc_sha512_t)); } #ifdef ISC_SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #if BYTE_ORDER == LITTLE_ENDIAN #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE64(*data++, W512[j]); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + W512[j]; \ (d) += T1, \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ j++ #else /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + (W512[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ #endif /* BYTE_ORDER == LITTLE_ENDIAN */ #define ROUND512(a,b,c,d,e,f,g,h) \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ void isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) { isc_uint64_t a, b, c, d, e, f, g, h, s0, s1; isc_uint64_t T1, *W512 = (isc_uint64_t*)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { ROUND512_0_TO_15(a,b,c,d,e,f,g,h); ROUND512_0_TO_15(h,a,b,c,d,e,f,g); ROUND512_0_TO_15(g,h,a,b,c,d,e,f); ROUND512_0_TO_15(f,g,h,a,b,c,d,e); ROUND512_0_TO_15(e,f,g,h,a,b,c,d); ROUND512_0_TO_15(d,e,f,g,h,a,b,c); ROUND512_0_TO_15(c,d,e,f,g,h,a,b); ROUND512_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a,b,c,d,e,f,g,h); ROUND512(h,a,b,c,d,e,f,g); ROUND512(g,h,a,b,c,d,e,f); ROUND512(f,g,h,a,b,c,d,e); ROUND512(e,f,g,h,a,b,c,d); ROUND512(d,e,f,g,h,a,b,c); ROUND512(c,d,e,f,g,h,a,b); ROUND512(b,c,d,e,f,g,h,a); } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; /* Avoid compiler warnings */ POST(a); POST(b); POST(c); POST(d); POST(e); POST(f); POST(g); POST(h); POST(T1); } #else /* ISC_SHA2_UNROLL_TRANSFORM */ void isc_sha512_transform(isc_sha512_t *context, const isc_uint64_t* data) { isc_uint64_t a, b, c, d, e, f, g, h, s0, s1; isc_uint64_t T1, T2, *W512 = (isc_uint64_t*)context->buffer; int j; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ REVERSE64(*data++, W512[j]); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; #else /* BYTE_ORDER == LITTLE_ENDIAN */ /* Apply the SHA-512 compression function to update a..h with copy */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j+1)&0x0f]; s0 = sigma0_512(s0); s1 = W512[(j+14)&0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; /* Avoid compiler warnings */ POST(a); POST(b); POST(c); POST(d); POST(e); POST(f); POST(g); POST(h); POST(T1); POST(T2); } #endif /* ISC_SHA2_UNROLL_TRANSFORM */ void isc_sha512_update(isc_sha512_t *context, const isc_uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0U) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0 && data != (isc_uint8_t*)0); usedspace = (unsigned int)((context->bitcount[0] >> 3) % ISC_SHA512_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = ISC_SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; isc_sha512_transform(context, (isc_uint64_t*)context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; /* Avoid compiler warnings: */ POST(usedspace); POST(freespace); return; } } while (len >= ISC_SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ memcpy(context->buffer, data, ISC_SHA512_BLOCK_LENGTH); isc_sha512_transform(context, (isc_uint64_t*)context->buffer); ADDINC128(context->bitcount, ISC_SHA512_BLOCK_LENGTH << 3); len -= ISC_SHA512_BLOCK_LENGTH; data += ISC_SHA512_BLOCK_LENGTH; } if (len > 0U) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; /* Avoid compiler warnings: */ POST(usedspace); POST(freespace); } void isc_sha512_last(isc_sha512_t *context) { unsigned int usedspace; usedspace = (unsigned int)((context->bitcount[0] >> 3) % ISC_SHA512_BLOCK_LENGTH); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount[0],context->bitcount[0]); REVERSE64(context->bitcount[1],context->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= ISC_SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, ISC_SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < ISC_SHA512_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, ISC_SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ isc_sha512_transform(context, (isc_uint64_t*)context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, ISC_SHA512_BLOCK_LENGTH - 2); } } else { /* Prepare for final transform: */ memset(context->buffer, 0, ISC_SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ *(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; *(isc_uint64_t*)&context->buffer[ISC_SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; /* Final transform: */ isc_sha512_transform(context, (isc_uint64_t*)context->buffer); } void isc_sha512_final(isc_uint8_t digest[], isc_sha512_t *context) { isc_uint64_t *d = (isc_uint64_t*)digest; /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { isc_sha512_last(context); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE64(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else memcpy(d, context->state, ISC_SHA512_DIGESTLENGTH); #endif } /* Zero out state data */ memset(context, 0, sizeof(*context)); } /*** SHA-384: *********************************************************/ void isc_sha384_init(isc_sha384_t *context) { if (context == (isc_sha384_t *)0) { return; } memcpy(context->state, sha384_initial_hash_value, ISC_SHA512_DIGESTLENGTH); memset(context->buffer, 0, ISC_SHA384_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } void isc_sha384_invalidate(isc_sha384_t *context) { memset(context, 0, sizeof(isc_sha384_t)); } void isc_sha384_update(isc_sha384_t *context, const isc_uint8_t* data, size_t len) { isc_sha512_update((isc_sha512_t *)context, data, len); } void isc_sha384_final(isc_uint8_t digest[], isc_sha384_t *context) { isc_uint64_t *d = (isc_uint64_t*)digest; /* Sanity check: */ REQUIRE(context != (isc_sha384_t *)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (isc_uint8_t*)0) { isc_sha512_last((isc_sha512_t *)context); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { REVERSE64(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else memcpy(d, context->state, ISC_SHA384_DIGESTLENGTH); #endif } /* Zero out state data */ memset(context, 0, sizeof(*context)); } #endif /* !ISC_PLATFORM_OPENSSLHASH */ /* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */ static const char *sha2_hex_digits = "0123456789abcdef"; char * isc_sha224_end(isc_sha224_t *context, char buffer[]) { isc_uint8_t digest[ISC_SHA224_DIGESTLENGTH], *d = digest; unsigned int i; /* Sanity check: */ REQUIRE(context != (isc_sha224_t *)0); if (buffer != (char*)0) { isc_sha224_final(digest, context); for (i = 0; i < ISC_SHA224_DIGESTLENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { #ifdef ISC_PLATFORM_OPENSSLHASH EVP_MD_CTX_cleanup(context); #else memset(context, 0, sizeof(*context)); #endif } memset(digest, 0, ISC_SHA224_DIGESTLENGTH); return buffer; } char * isc_sha224_data(const isc_uint8_t *data, size_t len, char digest[ISC_SHA224_DIGESTSTRINGLENGTH]) { isc_sha224_t context; isc_sha224_init(&context); isc_sha224_update(&context, data, len); return (isc_sha224_end(&context, digest)); } char * isc_sha256_end(isc_sha256_t *context, char buffer[]) { isc_uint8_t digest[ISC_SHA256_DIGESTLENGTH], *d = digest; unsigned int i; /* Sanity check: */ REQUIRE(context != (isc_sha256_t *)0); if (buffer != (char*)0) { isc_sha256_final(digest, context); for (i = 0; i < ISC_SHA256_DIGESTLENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { #ifdef ISC_PLATFORM_OPENSSLHASH EVP_MD_CTX_cleanup(context); #else memset(context, 0, sizeof(*context)); #endif } memset(digest, 0, ISC_SHA256_DIGESTLENGTH); return buffer; } char * isc_sha256_data(const isc_uint8_t* data, size_t len, char digest[ISC_SHA256_DIGESTSTRINGLENGTH]) { isc_sha256_t context; isc_sha256_init(&context); isc_sha256_update(&context, data, len); return (isc_sha256_end(&context, digest)); } char * isc_sha512_end(isc_sha512_t *context, char buffer[]) { isc_uint8_t digest[ISC_SHA512_DIGESTLENGTH], *d = digest; unsigned int i; /* Sanity check: */ REQUIRE(context != (isc_sha512_t *)0); if (buffer != (char*)0) { isc_sha512_final(digest, context); for (i = 0; i < ISC_SHA512_DIGESTLENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { #ifdef ISC_PLATFORM_OPENSSLHASH EVP_MD_CTX_cleanup(context); #else memset(context, 0, sizeof(*context)); #endif } memset(digest, 0, ISC_SHA512_DIGESTLENGTH); return buffer; } char * isc_sha512_data(const isc_uint8_t *data, size_t len, char digest[ISC_SHA512_DIGESTSTRINGLENGTH]) { isc_sha512_t context; isc_sha512_init(&context); isc_sha512_update(&context, data, len); return (isc_sha512_end(&context, digest)); } char * isc_sha384_end(isc_sha384_t *context, char buffer[]) { isc_uint8_t digest[ISC_SHA384_DIGESTLENGTH], *d = digest; unsigned int i; /* Sanity check: */ REQUIRE(context != (isc_sha384_t *)0); if (buffer != (char*)0) { isc_sha384_final(digest, context); for (i = 0; i < ISC_SHA384_DIGESTLENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { #ifdef ISC_PLATFORM_OPENSSLHASH EVP_MD_CTX_cleanup(context); #else memset(context, 0, sizeof(*context)); #endif } memset(digest, 0, ISC_SHA384_DIGESTLENGTH); return buffer; } char * isc_sha384_data(const isc_uint8_t *data, size_t len, char digest[ISC_SHA384_DIGESTSTRINGLENGTH]) { isc_sha384_t context; isc_sha384_init(&context); isc_sha384_update(&context, data, len); return (isc_sha384_end(&context, digest)); }