main absolute factorization routine, expects bivariate poly which is irreducible over Q
213{
219
225
229
231
233 {
235 {
241
244 delete [] S;
248 }
250 if (
result.getFirst().factor().inCoeffDomain())
254 iter.getItem().minpoly(),
iter.getItem().exp());
260
263 delete [] S;
267 }
268
270 {
276
279 delete [] S;
283 }
297 while (1)
298 {
302
303
307
310
312 {
314 {
323
326 delete [] S;
328 }
329 else
330 {
333 {
341
344 delete [] S;
346 }
348 continue;
349 }
350 }
354 {
357 break;
359 }
360
365 {
366 if (!
iter.getItem().factor().isUnivariate() &&
368 {
371 }
372 }
374 break;
377 }
380
385
391 {
395 }
396
398
400
403 for (
int i= 1;
i < 3;
i++)
404 {
406
411
417 }
418
419
421#ifdef HAVE_FLINT
427 {
431 }
432 else
433 {
437 }
442
443
444# ifndef slong
445# define slong long
446# endif
447
455
460
464
468
472#elif defined(HAVE_NTL)
476
478 {
481 }
484 {
487 }
488 else
489 {
492 }
502
505#else
507#endif
508
513 else
515
519 for (
int j= 1;
j <
s;
j++)
520 {
523 }
524
525 #ifdef HAVE_FLINT
537 #elif defined(HAVE_NTL)
539
541
548 #else
550 #endif
551
553 for (
int j= 1;
j <=
s;
j++)
555
560
561#ifdef HAVE_FLINT
570#endif
571
575 {
578 }
579 else
581 }
582
584 {
587 }
588
592 else
594
596
599 {
604 {
607 }
609 {
612 }
619 {
622 }
624 {
627 }
628 }
629 else
630 {
635 {
638 }
640 {
643 }
650 {
653 }
655 {
658 }
659 }
660
661
665 else
667
671 {
675 }
676
682 {
685 }
686
688 {
692 }
693
697 else
699
702
704
706
708
710
714
716 #ifdef HAVE_FLINT
717
723
726
731
733
736 #elif defined(HAVE_NTL)
742 #else
744 #endif
745
746
749 {
752 }
755
758 #ifdef HAVE_FLINT
761 #elif defined(HAVE_NTL)
763 #endif
767
771 if (
bb.getk() >
b.getk() )
b=
bb;
773 if (
bb.getk() >
b.getk() )
b=
bb;
774
777
783
785
787
791
793
796
798
803
808
811
813 {
817
819 {
824
826 break;
827 }
828 }
829
831 {
835 }
836
839 else
841
847
850 delete [] S;
851
853}
void convertFacCFMatrix2Fmpz_mat_t(fmpz_mat_t M, const CFMatrix &m)
conversion of a factory matrix over Z to a fmpz_mat_t
CFMatrix * convertFmpz_mat_t2FacCFMatrix(const fmpz_mat_t m)
conversion of a FLINT matrix over Z to a factory matrix
CanonicalForm convertFmpz2CF(const fmpz_t coefficient)
conversion of a FLINT integer to CanonicalForm
CanonicalForm convertFmpz_poly_t2FacCF(const fmpz_poly_t poly, const Variable &x)
conversion of a FLINT poly over Z to CanonicalForm
void convertFacCF2Fmpz_poly_t(fmpz_poly_t result, const CanonicalForm &f)
conversion of a factory univariate polynomial over Z to a fmpz_poly_t
Rational abs(const Rational &a)
CanonicalForm convertZZ2CF(const ZZ &a)
NAME: convertZZ2CF.
ZZX convertFacCF2NTLZZX(const CanonicalForm &f)
CanonicalForm convertNTLZZX2CF(const ZZX &polynom, const Variable &x)
zz_pX convertFacCF2NTLzzpX(const CanonicalForm &f)
mat_ZZ * convertFacCFMatrix2NTLmat_ZZ(const CFMatrix &m)
CFMatrix * convertNTLmat_ZZ2FacCFMatrix(const mat_ZZ &m)
bool modularIrredTestWithShift(const CanonicalForm &F)
modular absolute irreducibility test with shift as described in "Modular Las Vegas Algorithms for Pol...
bool absIrredTest(const CanonicalForm &F)
absolute irreducibility test as described in "Modular Las Vegas Algorithms for Polynomial Absolute Fa...
CanonicalForm decompress(const CanonicalForm &F, const mpz_t *inverseM, const mpz_t *A)
decompress a bivariate poly
CanonicalForm bCommonDen(const CanonicalForm &f)
CanonicalForm bCommonDen ( const CanonicalForm & f )
CanonicalForm maxNorm(const CanonicalForm &f)
CanonicalForm maxNorm ( const CanonicalForm & f )
CFFList FACTORY_PUBLIC factorize(const CanonicalForm &f, bool issqrfree=false)
factorization over or
CanonicalForm FACTORY_PUBLIC resultant(const CanonicalForm &f, const CanonicalForm &g, const Variable &x)
CanonicalForm resultant ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x )
static const int SW_RATIONAL
set to 1 for computations over Q
static const int SW_SYMMETRIC_FF
set to 1 for symmetric representation over F_q
static CanonicalForm bound(const CFMatrix &M)
CanonicalForm compress(const CanonicalForm &f, CFMap &m)
CanonicalForm compress ( const CanonicalForm & f, CFMap & m )
int cf_getBigPrime(int i)
VAR void(* factoryError)(const char *s)
DegreePattern provides a functionality to create, intersect and refine degree patterns.
ExtensionInfo contains information about extension.
factory's class for variables
class to do operations mod p^k for int's p and k
CanonicalForm inverse(const CanonicalForm &f, bool symmetric=true) const
#define DEBOUTLN(stream, objects)
int choosePoint(const CanonicalForm &F, int tdegF, CFArray &eval, bool rec, int absValue)
CFAFList uniAbsFactorize(const CanonicalForm &F, bool full=false)
univariate absolute factorization over Q
const CanonicalForm int const CFList & evaluation
const CanonicalForm int s
const CanonicalForm int const CFList const Variable & y
modpk coeffBound(const CanonicalForm &f, int p, const CanonicalForm &mipo)
compute p^k larger than the bound on the coefficients of a factor of f over Q (mipo)
void findGoodPrime(const CanonicalForm &f, int &start)
find a big prime p from our tables such that no term of f vanishes mod p
const Variable & v
< [in] a sqrfree bivariate poly
void appendSwapDecompress(CFList &factors1, const CFList &factors2, const CFList &factors3, const bool swap1, const bool swap2, const CFMap &N)
first swap Variables in factors1 if necessary, then append factors2 and factors3 on factors1 and fina...
CFList henselLiftAndEarly(CanonicalForm &A, bool &earlySuccess, CFList &earlyFactors, DegreePattern °s, int &liftBound, const CFList &uniFactors, const ExtensionInfo &info, const CanonicalForm &eval, modpk &b, CanonicalForm &den)
hensel Lifting and early factor detection
CFList factorRecombination(CFList &factors, CanonicalForm &F, const CanonicalForm &N, DegreePattern °s, const CanonicalForm &eval, int s, int thres, const modpk &b, const CanonicalForm &den)
naive factor recombination as decribed in "Factoring multivariate polynomials over a finite field" by...
convertFacCF2nmod_poly_t(FLINTmipo, M)
nmod_poly_clear(FLINTmipo)
Variable FACTORY_PUBLIC rootOf(const CanonicalForm &, char name='@')
returns a symbolic root of polynomial with name name Use it to define algebraic variables
CanonicalForm getMipo(const Variable &alpha, const Variable &x)
template List< Variable > Union(const List< Variable > &, const List< Variable > &)
bool delta(X x, Y y, D d)
static poly normalize(poly next_p, ideal add_generators, syStrategy syzstr, int *g_l, int *p_l, int crit_comp)
int F1(int a1, int &r1)
F1.
#define TIMING_END_AND_PRINT(t, msg)