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Abstract

CUBE is a generic presentation component suitable for displaying a wide variety of per-
formance metrics for parallel programs including MPI and OpenMP applications. Program
performance is represented in a multi-dimensional space including various program and sys-
tem resources. The tool allows the interactive exploration of this space in a scalable fashion
and browsing the different kinds of performance behavior with ease. CUBE also includes a
library to read and write performance data as well as operators to compare, integrate, and
summarize data from different experiments. This user manual provides instructions of how to
use the CUBE display, how to use the operators, and how to write CUBE files.

The CUBE3 implementation has incompatible API and file format to preceding versions.

1 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a generic presentation component suitable for
displaying a wide variety of performance metrics for parallel programs including MPI [2] and
OpenMP [3] applications. CUBE allows interactive exploration of a multidimensional metric space
in a scalable fashion. Scalability is achieved in two ways: hierarchical decomposition of individual
dimensions and aggregation across different dimensions. All metrics are uniformly accommodated
in the same display and thus provide the ability to easily compare the effects of different kinds of
program behavior.

CUBE has been designed around a high-level data model of program behavior called the CUBE per-
formance space. The CUBE performance space consists of three dimensions: a metric dimension,
a program dimension, and a system dimension. The metric dimension contains a set of metrics,
such as communication time or cache misses. The program dimension contains the program’s call
tree, which includes all the call paths onto which metric values can be mapped. The system dimen-
sion contains all the control flows of the program, which can be processes or threads depending on
the parallel programming model. Each point (m,c,l) of the space can be mapped onto a number
representing the actual measurement for metric m while the control flow of process/thread [ was
executing call path c. This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric dimension
is organized in an inclusion hierarchy where a metric at a lower level is a subset of its parent,
for example, communication time is below execution time. Second, the program dimension is
organized in a call-tree hierarchy. Flat profiles can be represented as multiple trivial call trees
consisting only of a single node. Finally, the system dimension is organized in a multi-level
hierarchy consisting of the levels: machine, SMP node, process, and thread.

CUBE also includes a library to read and write instances of the previously described data model in
the form of an XML file. The file representation is divided into a metadata part and a data part.
The metadata part describes the structure of the three dimensions plus the definitions of various
program and system resources. The data part contains the actual severity numbers to be mapped
onto the different elements of the performance space.

The display component can load such a file and display the different dimensions of the perfor-
mance space using three coupled tree browsers (Figure|[I). The browsers are connected so that the
user can view one dimension with respect to another dimension. For example, the user can click
on a particular metric and see its distribution across the call tree. If the CUBE file contains topolog-
ical information, the distribution of the performance metric across the topology can be examined
using the CUBE topology view. Furthermore, the display is augmented with a source-code display



that can show the exact position of a call site in the source code.

As performance tuning of parallel applications usually involves multiple experiments to compare
the effects of certain optimization strategies, CUBE includes a new feature designed to simplify
cross-experiment analysis. The CUBE algebra [4] is an extension of the framework for multi-
execution performance tuning by Karavanic and Miller [1]] and offers a set of operators that can
be used to compare, integrate, and summarize multiple CUBE data sets. The algebra allows the
combination of multiple CUBE data sets into a single one that can be displayed like the original
ones.

The following sections explain how to use the CUBE display, how to create CUBE files, and how
to use the algebra and other tools.

2 Using the Display

This section explains how to use the CUBE display component. After a brief description of the
basic principles, different components of the GUI will be described in detail.

2.1 Basic Principles

The CUBE display consists of three tree browsers, each of them representing a dimension of the
performance space (Figure[T)). The left tree displays the metric dimension, the middle tree displays
the program dimension, and the right tree displays the system dimension. The nodes in the metric
tree represent metrics. The nodes in the program dimension can have different semantics depend-
ing on the particular view that has been selected. In Figure|l} they represent call paths forming
a call tree. The nodes in the system dimension represent machines, nodes, processes, or threads
from top to bottom.

Users can perform two types of actions: selecting a node or expanding/collapsing a node. The
expansion/collapsion behavior for the system tree is different from the other trees because either
all entities of a given level are expanded or none.

Each node is associated with a metric value, which is called the severity and is displayed simulta-
neously using a numerical value as well as a colored square. Colors enable the easy identification
of nodes of interest even in a large tree, whereas the numerical values enable the precise compari-
son of individual values. The sign of a value is visually distinguished by the relief of the colored
square. A raised relief indicates a positive sign, a sunken relief indicates a negative sign.

A value shown in the metric tree represents the sum of a particular metric for the entire program,
that is, across all call paths and the entire system. A value shown in the call tree represents the
sum of the selected metric across all processes or threads for a particular call path. A value shown
in the system tree represents the selected metric for the selected call path and a particular system
resource. Briefly, a tree is always an aggregation of all of its neighbor trees to the right.

Note that all the hierarchies in CUBE are inclusion hierarchies, meaning that a child node represents
a part of the parent node. For example, the metric hierarchy might display cache misses as a child
node of cache accesses because the former event is a subset of the latter event. Similarly, in
Figure 2] the call path main contains the call paths main-foo and main-bar as child nodes because
their execution times are included in their parent’s execution time.

The severity displayed in CUBE follows the principle of single representation, that is, within a
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Figure 1: CUBE display window.

tree each fraction of the severity is displayed only once. The purpose of this display strategy is to
have a particular performance problem to appear only once in the tree and, thus, help identify it
more quickly. Therefore, the severity displayed at a node depends on the node’s state, whether it
is expanded or collapsed. The severity of a collapsed node represents the whole subtree associated
with that node, whereas the severity of an expanded node represents only the fraction that is not
covered by its descendants because the severity of its descendants is now displayed separately. We
call the former one inclusive severity, whereas we call the latter one exclusive severity.

100 main

10 main
' 30 foo
60 bar

Figure 2: Node of the call tree in collapsed or expanded state.

For instance, a call tree may have a node main with two children main-foo and main-bar (Figure[2).
In the collapsed state, this node is labeled with the time spent in the whole program. In the
expanded state it displays only the fraction that is spent neither in foo nor in bar. Note that the
label of a node does not change when it is expanded or collapsed, even if the severity of the node
changes from exclusive to inclusive or vice versa.

2.2  GUI Components

The GUI consists of a menu bar, three tree browsers, a color legend, and a status bar. In addition,
some tree browsers provides a context menu associated with each node that can be used to access
node-specific information.



2.2.1 Tree Browsers

The tree browsers are controlled by the left and right mouse buttons. The left mouse button is used
to select or expand/collapse a node. The right mouse button is used to pop up a context menu with
node-specific information, such as online documentation.

A label in the metric tree shows a metric name. A label in the call tree shows the last callee of a
particular call path. If you want to know the complete call path, you must read all labels from the
root down to the particular node you are interested in. After switching to the region-profile view
(see below), labels in the middle tree denote regions depending on their level in the tree. A label
in the system tree shows the name of the system resource it represents, such as a node name or a
machine name. Processes and threads are usually identified by a number, but it is possible to give
them specific names when creating a CUBE file. The thread level of single-threaded applications
is hidden. Note that all trees can have multiple root nodes.

Each tree view has its own drop-down menu, where it is possible to change the way the severty
values are displayed. The options include: absolute value (default), a root percentage, a selection
percentage, an external percentage, a peer percentage, or a peer distribution. The last two options
are only available for the system tree. The absolute value is the real value measured. When dis-
playing a value as a root percentage, the percentage refers to the value shown at the root of the
metric tree when it is in collapsed state. However, both absolute mode and root percentage mode
have the disadvantage that values can become very small the more you go to the right, since aggre-
gation occurs from right to left. To avoid this problem, the user can switch to selection percentage.
Then, a percentage in the right or middle tree always refers to the selection in the neighbor to the
left, that is, a percentage in the system dimension refers to the selection in the program dimension
and a percentage in the program dimension refers to the selected metric dimension. In this mode
the percentages in the middle and right tree always sum up to one hundred percent. Furthermore, to
facilitate the comparison of different experiments, users can choose the external percentage mode
to display percentages relative to another data set. The external percentage mode is basically like
the normal percentage mode except that the value equal to 100% is determined by another data
set. The peer percentage mode shows the percentage relative to the maximum amount of peer val-
ues (all entities of the current leaf level), depending on the current expansion depth. The severity
values for the non-peer nodes are shown as N.A. The peer distribution mode shows the percentage
relative to the maximum and non-zero minimum amount of peer values, depending on the current
expansion depth. The non-peer node severity values and all peers with exact zero values are shown
as N.A. Note that in the absolute mode, all values are displayed in scientific notation. To prevent
cluttering the display, only the mantissa is shown at the nodes with the exponent displayed at the
color legend.

Each tree view also has a status bar, where the left section shows the selected absolute value and
the percentage relative to 100% as defined in the selected percentage mode and the right section
shows the value or range according to which colors are assigned depending on the selected mode.

After opening a data set the middle panel shows the call tree of the program. However, a user
might wish to know which fraction of a metric can be attributed to a particular region regardless
of from where it was called. In this case, the user can switch from the call-tree mode (default) to
the region-profile mode (Figure [3). In the region-profile mode, the call-tree hierarchy is replaced
with a source-code hierarchy consisting of two levels: region, and subregions. The subregions, if
applicable, are displayed as a single child node labeled subregions. A subregions node represents
all regions directly called from the region above. In this way, the user is able to see which fraction



of a metric is associated with a region exclusively, that is, without its regions called from there.

2.2.2 Menu Bar

The menu bar consists of three menus, a file menu, a view menu, and a help menu.

File
The file menu can be used to open and close a file and to exit CUBE. It also allows users to
add additional mirrors to the existing ones.

View
The view menu can be used to set a reference data set for the external percentage mode.

If one or more virtual topologies have been defined in the CUBE file, and if the user clicks
on the topology tab in the GUI, the Topology menu item will be enabled. Otherwise it is
disabled. After selecting topolgy tab, the Cartesian-selection dialog pops up if the CUBE file
has multiple topologies. Through this dialog, users can choose a specific topology view to
display in a topology tab next to the system tree tab. Please refer to Section [2.3]for detailed
information.

Help
Currently, the help menu provides only an About dialog with release information.

O B ={s] be 0

File  ‘Wiew Help
Metrics Call Tree  Flat Profile | System Tree | Topology Wiew
Absolute Al [Absolute /| [Absolute /
re—] 0,00 Time — ] 0.00 MPI_Abort . Bos il 0.00 BN :
-l 458519.06 Execution ——[] 0.00 MPI_Accumulate J 20-MAD-M
= 2.13 MPI —1 0.00 MPI_Address O 0.75 R20-MO-Ne
—1 0.00 MFPI_Allgather 0.75 R20-MO-N7
——{1 0.00 MPI_Allgathens O 0.75 R20-h0-ME
—1 0.00 MPI_Allreduce 062 R20-M0-MNd
—1 0.00 MPI_Alltoall 062 R20-MO-MNc
] 0.00 MPI_Alltoalh 0.53 R20-MO-MN5
-l 80000258 Visits 1 0.00 MPI_Alltoalhw 0.53 R20-MO-MN4
——] 0.00 MPI_Attr_delete 0.53 R20-MO-MNb
——1 0.00 MFI_Attr_get 0.563 R20-M0O-MNa
—1 0.00 MPI_Attr_put O 0.62 R20-h0-M3
er 062 R20-MO-MN2
—] 0.00 MFI_Bcast O 0.75 R20-M0-M3 n
—— 0.00 MPI_Bsend ; 0.75 R20-M0O-MNS
| T =l = T = 0.75 R20-M0-M 1 /
[10657 (0.0%) | 5.179e+05| [10.657 (100.0%) | 5.179e+05| [0.000 (0.0%) | 5179e+05
FIIII L | | RN L L]
|512% 1 |

Figure 3: CUBE flat profile.



2.2.3 Color Legend

The color is taken from a spectrum ranging from blue to red representing the whole range of pos-
sible values. To avoid an unnecessary distraction, insignificant values close to zero are displayed
in dark gray. Exact zero values just have the background color.

2.2.4 Status Bar

The numbers m x n indicate that there are m processes and for each process there are at most n
threads in the execution.

2.2.5 Context Menus

All tree views provide a context menu that can be used to obtain specific information on each
node. The context menu is accessible via the right mouse button. It displays all or a subset of the
options described below.

The call tree has a context menu consisting of two levels. The first-level menu items are Call site
and Called region. Choosing the Call site menu shows the information related to the call site, and
choosing the Called region menu shows the information related to the region being called by the
call site (i.e., the callee).

Location: Displays the source-code location of a program resource in textual form (i.e., at which
line and in what module). In the module-profile and region-profile modes, it always refers
to the location of its associated region. In the call-tree mode, a call-tree node is usually
associated with two entities: a callsite and the region called by the callsite. By entering a
specific level of the context menu: Callsite or Called region, users are able to check either
the associated call site’s or the called region’s location. For the call site, it shows the call
site’s location where it has been called or its calling region’s location if the line number of
the call site is undefined. For the called region, it shows the location of the region being
called by the call site.

Source code: Displays and highlights the source code of a program resource in the source code
browser. In the module-profile and region-profile modes, it always shows and highlights
the source code of its associated region. In the call-tree mode, since each call-tree node
has a context menu of two levels, by choosing the Call site menu it displays and highlights
the source code of the call site or the block of source code of the calling region. And
by choosing the Called region menu it displays and highlights the block of code of the
region being called by the call site. Note that not all data sets provide sufficient line-number
information to show the correct section of the source code.

Online description: Both metrics and regions can be linked to an online description. For
example, metrics might point to an online documentation explaining their semantics, or re-

gions representing library functions might point to the corresponding library documentation.

Info: A brief description of the selected node supplied by the CUBE data set.



2.3 Topology Display

In many parallel applications, each process (or thread) communicates only with a limited number
of processes. The parallel algorithm divides the application domain into smaller chunks known as
sub domains. A process usually communicates with processes owning sub domains adjacent to its
own. The mapping of data onto processes and the neighborhood relationship resulting from this
mapping is called virtual topology. Many applications use one or more virtual topologies (Fig-
ure ) specified as one-, two- or three-dimensional Cartesian grids. The CUBE topology display
shows performance data mapped onto the Cartesian topology of the application. The correspond-
ing grid is specified by two parameters: number of dimensions and size of each dimension.
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Figure 4: Topology Display

The display consists of a drop-down menu and the actual Cartesian grid. The Cartesian grid is
presented by planes stacked on top of each other in a three dimensional projection. The number of
planes depends on the number of dimensions in the grid. Each plane is divided into squares. The
number of squares depends on the dimension size. Each square represents a system resource (e.g
a process) of the application and has a coordinate associate with it.

The grid displays the severity of the selected metric in the selected call path for each system
resource participating in the application’s topology. The severity is represented as a color. A
system resource might not be a part of the application’s virtual topology or may have a zero value
for a metric. Therefore, it is sometimes possible to have some uncolored squares in the grid picture.



2.3.1 Topology Menu Bar

The menu related to Topology is located in the View Menu. It consists of three submenus: a view
menu, a geometry menu, and a Zzoom menu.

View: The view menu can be used to choose one of the three possible orientations of the grid. The
coordinate axes at the bottom of the picture indicate the direction of X, Y and Z dimensions
in the three-dimensional space. In case of one- or two- dimensional grids, users are provided
with only one orientation of the grid.

Geometry: Due to varying dimension sizes, planes in the grid might overlap with each other and
the size of the squares might be too small to recognize their color. This may pose a problem
for the user to view the topology information effectively. The geometry menu circumvents
this problem by providing options to scale the picture in various ways. The Angle option
helps the user to adjust the skew of the three-dimensional projection. The Plane Distance
option helps to adjust the inter-plane distance. The Plane Length option helps users scale
the area of each plane.

zoom: The zoom menu can be used to zoom-in or zoom-out on the grid.

3 Performance Algebra

As performance tuning of parallel applications usually involves multiple experiments to compare
the effects of certain optimization strategies, CUBE offers a mechanism called performance alge-
bra that can be used to merge, subtract, and average the data from different experiments and and
view the results in the form of a single “derived” experiment. Using the same representation for
derived experiments and original experiments provides access to the derived behavior based on
familiar metaphors and tools in addition to an arbitrary and easy composition of operations. The
algebra is an ideal tool to verify and locate performance improvements and degradations likewise.
The algebra includes three operators diff, merge, and mean provided as command-line utilities
which take two or more CUBE files as input and generate another CUBE file as output. The opera-
tions are closed in the sense that the operators can be applied to the results of previous operations.
Note that although all operators are defined for any valid CUBE data sets, not all possible opera-
tions make actually sense. For example, whereas it can be very helpful to compare two versions of
the same code, computing the difference between entirely different programs is unlikely to yield
any useful results.

3.1 Difference

Changing a program can alter its performance behavior. Altering the performance behavior means
that different results are achieved for different metrics. Some might increase while others might
decrease. Some might rise in certain parts of the program only, while they drop off in other
parts. Finding the reason for a gain or loss in overall performance often requires considering the
performance change as a multidimensional structure. With CUBE’s difference operator, a user
can view this structure by computing the difference between two experiments and rendering the
derived result experiment like an original one. The difference operator takes two experiments
and computes a derived experiment whose severity function reflects the difference between the
minuend’s severity and the subtrahend’s severity.
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Usage: cube3_diff [-o output] [-c] [-C] [-h] minuend subtrahend

-0 Name of the output file (default: diff.cube)

-¢ Do not collapse system dimension, if experiments are incompatible
-C Collapse system dimension!

-h Help; Output a brief help message.

3.2 Merge

The merge operator’s purpose is the integration of performance data from different sources. Often
a certain combination of performance metrics cannot be measured during a single run. For exam-
ple, certain combinations of hardware events cannot be counted simultaneously due to hardware
resource limits. Or the combination of performance metrics requires using different monitoring
tools that cannot be deployed during the same run. The merge operator takes an arbitrary number
of CUBE experiments with a different or overlapping set of metrics and yields a derived CUBE
experiment with a joint set of metrics.

Usage: cube3_merge [-o output] [-c] [-C] [-h] cube ...

-0 Name of the output file (default: merge.cube)

-¢ Do not collapse system dimension, if experiments are incompatible
-C Collapse system dimension!

-h Help; Output a brief help message.

3.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by unrelated
system activity during an experiment or to summarize across a range of execution parameters.
The user can conduct several experiments and create a single average experiment from the whole
series. The mean operator takes an arbitrary number of arguments.

Usage: cube3_mean [-o0 output] [-c] [-C] [-h] cube ...

-0 Name of the output file (default: mean.cube)

-¢ Do not collapse system dimension, if experiments are incompatible
-C Collapse system dimension!

-h Help; Output a brief help message.

4 Creating CUBE Files

The CUBE data format in an XML instance [5]. The CUBE library provides an interface to create
CUBE files. It is a simple class interface and includes only a few methods. This section first
describes the CUBE API and then presents a simple C++ program as an example of how to use it.
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4.1 CUBE API

The class interface defines a class Cube. The class provides a default constructor and fourty
methods. The methods are divided into four groups. The first three groups are used to define the
three dimensions of the performance space and the last group is used to enter the actual data. In
addition, an output operator << to write the data to a file is provided.

4.1.1 Metric Dimension

This group refers to the metric dimension of the performance space. It consists of a single method
used to build metric trees. Each node in the metric tree represents a performance metric. Metrics
have different units of measurement. The unit can be either “sec” (i.e., seconds) for time based
metrics, such as execution time, or “occ” (i.e., occurrences) for event-based metrics, such as
floating-point operations. During the establishment of a metric tree, a child metric is usually
more specific than its parent, and both of them have the same unit of measurement. Thus, a child
performance metric has to be a subset of its parent metric (e.g., system time is a subset of execution
time).

Metric* def met (const std::string &disp-_name, const std::string &unig_name,
const std::string &dtype, const std::string &uom,
const std::string &val, const std::string é&url,
const std::string &descr, Metric* parent);

Returns a metric with display name disp_name, unique name unig_name and description
descr. dtype specifies the data type, which can either be “INTEGER” or “FLOAT”. uom is the
unit of measurement, which is either “sec” for seconds or “occ” for number of occurrences.
The val field specifies whether there is any data available for this particular metric. It can
either be “VOID” (no data available, metric will not be shown in CUBE) or an empty string
(metric will be shown and data is present). parent is a previously created metric which will
be the new metric’s parent. To define a root node, use NULL instead. url is a link to an HTML
page describing the new metric in detail. If you want to mirror the page at several locations,
you can use the macro @mirror @ as a prefix, which will be replaced by an available mirror
defined using def mirror () (see Section4.1.6).

const std::vector<Metric*>& get_metv () const;

Returns a vector with all metrics in the CUBE object.

const std::vector<Metric*>& get_root_metv () const;

Returns a vector with all roots of the metric dimension in the CUBE object.

Metric* get_met ( const std::string& unig.name) const;

Returns a metric with the given unig_name. Returns NULL if the CUBE object doesn’t contain
a metric with this name.

Metric* get_root_met ( Metric * met);

Returns the root metric for the given metric met.

12



4.1.2 Program Dimension

This group refers to the program dimension of the performance space. The entities presented
in this dimension are region, call site, and call-tree node (i.e., call paths). A region can be a
function, a loop, or a basic block. Each region can have multiple call sites from which the control
flow of the program enters a new region. Although we use the term call site here, any place that
causes the program to enter a new region can be represented as a call site, including loop entries.
Correspondingly, the region entered from a call site is called callee, which might as well be a loop.
Every call-tree node points to a call site. The actual call path represented by a call-tree node can
be derived by following all the call sites starting at the root node and ending at the particular node
of interest. The user can choose among three ways of defining the program dimension:

1. Call tree with line numbers
2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes point to call sites. A call tree without
line numbers is defined as a tree whose nodes point to regions (i.e., the callees). A flat profile is
simply defined as a set of regions, that is, no tree has to be defined.

Region* def_region (const std::string &name, long begln, long endln,

const std::string &url, const std::string &descr,

const std::string &mod);
Returns a new region with region name name and description descr. The region is located
in the module mod and exists from line begln to line endln. url is a link to an HTML page
describing the new region in detail. For example, if the region is a library function, the url
can point its documentation. If you want to mirror the page at several locations, you can use
the macro @nirror@ as a prefix, which will be replaced by an available mirror defined
using def mirror () (see Section[d.1.6).

Cnode* def_cnode (Region* callee,
const std::string &mod, int line,
Cnode* parent);
Returns a new call-tree node representing a call from call site located at the line 1ine of the
module mod. The call tree node calls the callee callee (i.e., a previously defined region).
parent is a previously created call-tree node which will be the new one’s parent. To define
a root node, use NULL instead. This method is used to create a call tree with line numbers.

Cnode* def_cnode (Region* region,
Cnode* parent);
Defines a new call-tree node representing a call to the region region. parent is a previously
created call-tree node which will be the new one’s parent. To define a root node, use NULL
instead. Note that different from the previous def_cnode (), this method is used to create a
call-tree without line numbers where each call-tree node points to a region.

To define a call tree with line numbers use def_cnode (Region*, string, int...).Todefinea
call tree without line numbers use def_cnode (Region*, Cnode*) instead. To create a flat profile
use neither one — just defining a set of regions will be sufficient.

const std::vector<Region*>& get_regv () const;
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Returns a vector with all regions in the CUBE object.

const std::vector<Cnode*>& get_cnodev () const;

Returns a vector with all call-tree nodes in the CUBE object.

Cnode* get_cnode (Cnode & cn) const;

Search a call-tree node cn. Returns NULL if the CUBE object does not contain the given
call-tree node.

4.1.3 System Dimension

This group refers to the system dimension of the performance space. It reflects the system re-
sources which the program is using at runtime. The entities present in this dimension are machine,
node, process, and thread, which populate four levels of the system hierarchy in the given order.
That is, the first level consists of machines, the second level of nodes, and so on. Finally, the last
(i.e., leaf) level is populated only by threads. The system tree is built in a top-down way starting
with a machine. Note that even if every process has only one thread, users still need to define the
thread level.

Machine* defmach (const std::string &name, const std::string &desc);

Returns a new machine with the name name and description desc.

Node* def_node (const std::string &name, Machine* mach);

Returns a new (SMP) node which has the name name and which belongs to the machine
mach.

Process* def_proc (const std::string &name, int rank,
Node* node);

Returns a new process which has the name name and the rank rank. The rank is a number
from 0 — (n — 1), where n is the total number of processes. MPI applications may use the
rank in MPT_COMM_WORLD. The process runs on the node node.

Thread* def_thrd (cosnt std::string name&, int rank,
Process* proc);
Defines a new thread which has the name name and the rank rank. The rank is a number
from 0 — (n — 1), where n is the total number of threads spawned by a process. OpenMP
applications may use the OpenMP thread number. The thread belongs to the process proc.
const std::vector<Sysres*>& get_sysv () const;
Returns a vector with all system resources (e.g. node, thread, process) available in the CUBE
object.
const std::vector<Machine*>& get_machv () const;

Returns a vector with all machines in the CUBE object.

const std::vector<Node*>& get_nodev () const;

Returns a vector with all nodes of all machines in the CUBE object.

14



const std::vector<Process*>& get_procv () const;
Returns a vector with all processes in the CUBE object.

const std::vector<Thread*>& get_thrdv () const;
Returns a vector with all threads in the CUBE object.

Machine * get_mach (Machine & mach) const;
Search for the machine mach in the CUBE object. Returns NULL if the CUBE object does not
contain the given machine.

Node *get_node (Node & node) const ;

Search for the node node in the CUBE object. Returns NULL if the CUBE object does not
contain the given node.

4.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relationships among machines, SMP nodes, pro-
cesses or threads. A topology usually consists of a single class of entities such as threads or
processes. The CUBE API provides a set of functions to create Cartesian topologies and to de-
fine the machine/SMP node/process/thread mappings onto coordinates. Note that the definition of
virtual topologies is optional.

Cartesian* def_cart (long ndims, const std::vector<long>& dimv,
const std::vector<bool>& periodv);
Defines a new Cartesian topology. ndims and dimv specify the number of dimensions and
the size of each dimension. periodv specifies the periodicity for each dimension. Currently,
the maximum value for ndims is three.

void def_coords (Cartesian* cart, Sysres* sys,
const std::vector<long>& coordv);
Maps a specific system resource onto a Cartesian coordinate. The system resource sys may
be a machine, SMP node, process or a thread. It is not recommended to map a mixed set
of entities onto one topology (e.g., machines and threads are located in the same topology).
The parameter of cart has been defined by the above def_cart () method.

const std::vector<Cartesian *>& get_cartv () const ;
Returns a vector of all cartesian topologies available in the CUBE object.

const Cartesian * get_cart ( int i) const ;
Returns in i-th topology in the CUBE object.

4.1.5 Severity Mapping

After the establishment of the performance space, users can assign severity values to points of the
space. Each point is identified by a tuple (met, cnode, thrd). The value should be inclusive
with respect to the metric, but exclusive with respect to the call-tree node, that is it should not
cover its children. The default severity value for the data points left undefined is zero. Thus, users
only need to define non-zero data points.

void set_sev (Metric* met, Cnode* cnode,
Thread* thrd, double value);
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Assigns the value value to the point (met, cnode, thrd).

void add_sev (Metric* met, Cnode* cnode,
Thread* thrd, double value);
Adds the value value to the present value at point (met, cnode, thrd).

The previous two methods set_sev () and add_sev () are intended to be used when the program
dimension contains a call tree and not a flat profile. As the flat profile does not require the definition
of call-tree nodes, the following two functions should be used instead:

void set_sev (Metric* met, Region* region,
Thread* thrd, double value);
Assigns the value value to the point (met, region, thrd).
void add_sev  (Metric* met, Region* region,
Thread* thrd, double value);
Adds the value value to the present value at point (met, region, thrd).

double get_sev ( Metric * met, Cnode * cnode, Thread * thrd) const;

Returns the value for the point (met, cnode, thrd).

4.1.6 Miscellaneous

Often users may want to define some information related to the CUBE file itself, such as the creation
date, experiment platform, and so on. For this purpose, CUBE allows the definition of arbitrary
attributes in every CUBE data set. An attribute is simply a key-value pair and can be defined using
the following method:

void def_attr (const std::string &key, const std::tring &value);

Assigns the value value to the attribute key.

CUBE allows using multiple mirrors for the online documentation associated with metrics and
regions. The url expression supplied as an argument for def metric () and def_region () can
contain a prefix €mirror@. When the online documentation is accessed, CUBE can substitute all
mirrors defined for the prefix until a valid one has been found. If no valid online mirror can be
found, CUBE will substitute the . /doc directory of the installation path for @mirror@.

void def mirror (const std::string &mirror);

Defines the mirror mirror as potential substitution for the URL prefix @mirror@.

std::string get_attr(const std::string &key) const;
Returns the attribute in the CUBE object stored for the given key.

const std::map<std::string, std::string> get_attrs() const;

Returns all attributes associated to the CUBE object as a map.

const std::vector<std::string>& get_mirrors() const;

Returns all mirrors defined in the CUBE object.

int get_num_thrd() const;

Returns the maximal number of threads per process in the CUBE object.
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4.1.7 Writer Library in C

In order to create data files, another possibility is to use the C version of the CUBE writer API. The
interface defines a struct cube_t and provides the following functions:

cube_t* cube_create();

Returns a new CUBE structure.

void cube_free(cube_t* c);

Destroys the given CUBE structure.

cube_metric* cube_def met (cube_t* c, const char* disp_name,
const char* unig.name, const char* dtype,
const char* uom, const char* val,
const char* url, const char* descr,
cube_metric* parent);

Returns a new metric structure.

cube_region* cube_def _region (cube_t* c, const char* name, long begln,
long endln, const char* url,
const char* descr, const char* mod);

Returns a new region.

cube_cnode* cube_def _cnode_cs (cube_t* c, cube_region* callee,
const char* mod, int line,
cube_cnode* parent);

Returns a new call-tree node structure with line numbers.
cube_cnode* cube_def_cnode (cube_t* c, cube_region* callee,
cube_cnode* parent);
Returns a new call-tree node structure without line numbers.
cube_machine* cube_def_mach (cube_t* ¢, const char* name
const char* desc);
Returns a new machine.
cube_node* cube_def_node (cube_t* ¢, const char* name,
cube_machine* mach);

Returns a new node.

cube_process* cube_def_proc (cube_t* c, const char* name,
int rank, cube_node* node);

Returns a new process.

cube_thread* cube_def_thrd (cube_t* ¢, const char* name,
int rank, cube_process* proc);

Returns a new thread.

cube_cartesian* cube_def_cart (cube_t* ¢, long ndims,
long int* dimv, int* periodv);
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Defines a new Cartesian topology.

void cube_def_coords (cube_t* c, cube_cartesian* cart,
cube_thread* thrd, long int* coord);

Maps a thread onto a Cartesian coordinate.

void cube_set_sev (cube_t* ¢, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Assigns the severity value to the point (met, cnode, thrd). Can only be used after
metric, cnode and thread definitions are complete. Note that you can only use either the
region or the cnode form of these calls, but not both at the same time.

double cube_get_sev (cube_t* c, cubemetric* met, cube_cnode* cnode,
cube_thread* thrd);

Returns the severity of the point (met, cnode, thrd).

void cube_set_sev_reg (cube_t* ¢, cubemetric* met, cube_region* reg,
cube_thread* thrd, double value);
Assigns the severity value to the point (met, reg, thrd). Can only be used after metric,
regino and thread definitions are complete. Note that you can only use either the region or
the cnode form of these calls, but not both at the same time.

void cube_add_sev (cube_t* ¢, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Adds the severity value to the present value at point (met, cnode, thrd). Can only be
used after metric, cnode and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube_add_sev_reg (cube_t* c, cubemetric* met, cube_region* regq,
cube_thread* thrd, double value);

Adds the severity value to the present value at point (met, reg, thrd). Can only be used
after metric, region and thread definitions are complete. Note that you can only use either
the region or the cnode form of these calls, but not both at the same time.

void cube_write_all (cube_t* c, FILE* fp);

Writes the entire CUBE data to the given file. This basically corresponds to calling
cube_write_def () and cube_write_sev_matrix().

void cube_write_def (cube_t* c, FILE* fp);

Writes the definitions part of the CUBE data to the given file. Should only be used after
definitions are complete.

void cube_write_sev.matrix (cube_t* c, FILE* fp);

Writes the severity values part of the CUBE data to the given file. Should only be used after
severity values are completely set. Unset values default to zero.

void cube _write_sev_row (cube_t* c, FILE* fp,
cube_metric* met,
cube_cnode* cnode,
double* sevs);
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1 void foo() {

10 }

11 void bar () {

20 }

21 int main(int argc, char* argv) {
60 foo();

80 bar () ;

100 }

Figure 5: Target-application source code example.c

Writes the given severity values of (met, cnode) for all threads to the given file. This can
be used instead of cube write_sev.matrix () to incrementally write parts of the severity
matrix.

void cube_write_finish (cube_t* c, FILE* fp);

Writes the end tags to a file. Must be called at the very end before closing the file, but only
when incrementally writing the severity matrix using cube write_sev.matrix (). When
using cube_write_sev_matrix () to write the severity matrix in one chunk, calling this
function is not needed.

4.2 Typical Usage

A simple C++ program is given to demonstrate how to use the CUBE write interface. Figure [6]
shows the corresponding CUBE display. The source code of the target application is provided in

Figure 3]

// A C++ example using CUBE write interface
#include <cube3/Cube.h>

#include <string>

#include <fstream>

using namespace std;
using namespace cube;

int main(int argc, char* argv[]) {
Cube cube;

// Specify mirrors (optional)

cube.def_mirror ("http://icl.cs.utk.edu/software/kojak/");
cube.def_mirror ("http://www.fz-juelich.de/jsc/kojak/");
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// Specify information related to the file (optional)
cube.def_attr("experiment time", "September 27th, 2006");
cube.def_attr("description", "a simple example");

// Build metric tree
Metric* met0 = cube.def_met ("Time", "Time", "FLOAT", "sec", "",
"@mirror@patterns-2.1.html#execution”,
"root node", NULL); // using mirror
Metric* metl = cube.def_met ("User time", "User Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/usr.html",

"2nd level", met0O); // without using mirror
cube.def_met ("System time", "System Time", "FLOAT", "sec",
"http://www.cs.utk.edu/sys.html",

"2nd level", met0); // without using mirror

Metric* met2

// Build call tree

string mod = "/ICL/CUBE/example.c";
Region* regn0 = cube.def_region("main", 21, 100, "", "lst level", mod);
Region* regnl = cube.def_region("foo", 1, 10, "", "2nd level", mod);

Region* regn2 cube.def_region("bar", 11, 20, "", "2nd level", mod);

Cnode* cnode0 cube.def_cnode (regn0, mod, 21, NULL);
Cnode* cnodel cube.def_cnode (regnl, mod, 60, cnode0);
Cnode* cnode2 = cube.def_cnode (regn2, mod, 80, cnodel);

// Build system resource tree

Machine* mach = cube.def_mach("MSC", "");

Node* node = cube.def_node("Athena", mach);

Process* procO = cube.def_proc("Process 0", 0, node);

Process* procl = cube.def_proc("Process 1", 1, node);

Thread* thrd0 = cube.def_thrd("Thread 0", 0, procO);
( )

Thread* thrdl = cube.def_thrd("Thread 1", 1, procl);

// Build 2D Cartesian a topology (a 5x5 grid)
int ndims = 2;
vector<long> dimv;
vector<bool> periodv;
for (int 1 = 0; 1 < ndims; i++) {

dimv.push_back (5);

if (1 %2 ==0)

periodv.push_back (true);
else
periodv.push_back (false);

}
Cartesian* cart = cube.def_cart (ndims, dimv, periodv);
vector<long> coord(0, coordl;
coord0.push_back (0) ;
coord(.push_back (0);
coordl.push_back (3);
coordl.push_back (3);
// map the two threads onto the above 2 coordinates
cube.def_coords (cart, thrd0, coord0);
cube.def_coords (cart, thrdl, coordl);
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// Severity mapping
cube.set_sev (metO0,
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// Output to a cube file
ofstream out;
out.open ("example.cube");
out << cube;
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Figure 6: Display of example.cube
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