
Package ‘MLwrap’
October 21, 2025

Title Machine Learning Modelling for Everyone

Version 0.2.1

Description A minimal library specifically designed to make the estimation of
Machine Learning (ML) techniques as easy and accessible as possible,
particularly within the framework of the Knowledge Discovery in
Databases (KDD) process in data mining. The package provides
essential tools to structure and execute each stage of a predictive
or classification modeling workflow, aligning closely with the
fundamental steps of the KDD methodology, from data selection and
preparation, through model building and tuning, to the
interpretation and evaluation of results using Sensitivity Analysis.
The 'MLwrap' workflow is organized into four core steps;
preprocessing(), build_model(), fine_tuning(), and
sensitivity_analysis(). These steps correspond, respectively, to
data preparation and transformation, model construction,
hyperparameter optimization, and sensitivity analysis. The user can
access comprehensive model evaluation results including fit
assessment metrics, plots, predictions, and performance diagnostics
for ML models implemented through 'Neural Networks', 'Random Forest',
'XGBoost' (Extreme Gradient Boosting), and 'Support Vector Machines'
(SVM) algorithms. By streamlining these phases, 'MLwrap' aims to
simplify the implementation of ML techniques, allowing analysts and
data scientists to focus on extracting actionable insights and
meaningful patterns from large datasets, in line with the objectives
of the KDD process.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>= 4.1.0)

Imports R6, tidyr, magrittr, dials, parsnip, recipes, rsample, tune,
workflows, yardstick, vip, glue, innsight, fastshap,
DiagrammeR, ggbeeswarm, ggplot2, sensitivity, dplyr, rlang,
tibble, patchwork, cli, scales

Suggests testthat (>= 3.0.0), torch, brulee, ranger, kernlab, xgboost

1

2 Contents

Config/testthat/edition 3

URL https://github.com/AlbertSesePsy/MLwrap

BugReports https://github.com/AlbertSesePsy/MLwrap/issues

LazyData true

NeedsCompilation no

Author Javier Martínez García [aut] (ORCID:
<https://orcid.org/0009-0007-7861-5274>),

Juan José Montaño Moreno [ctb] (ORCID:
<https://orcid.org/0000-0002-1116-1964>),

Albert Sesé [cre, ctb] (ORCID: <https://orcid.org/0000-0003-3771-1749>)

Maintainer Albert Sesé <albert.sese@uib.es>

Repository CRAN

Date/Publication 2025-10-21 15:10:02 UTC

Contents
build_model . 3
fine_tuning . 6
plot_calibration_curve . 8
plot_confusion_matrix . 9
plot_distribution_by_class . 10
plot_gain_curve . 11
plot_graph_nn . 11
plot_integrated_gradients . 12
plot_lift_curve . 13
plot_loss_curve . 14
plot_olden . 15
plot_pfi . 16
plot_pr_curve . 17
plot_residuals_distribution . 17
plot_roc_curve . 18
plot_scatter_predictions . 19
plot_scatter_residuals . 20
plot_shap . 21
plot_sobol_jansen . 22
plot_tuning_results . 23
preprocessing . 24
sensitivity_analysis . 26
sim_data . 28
table_best_hyperparameters . 29
table_evaluation_results . 30
table_integrated_gradients_results . 31
table_olden_results . 32
table_pfi_results . 33

https://github.com/AlbertSesePsy/MLwrap
https://github.com/AlbertSesePsy/MLwrap/issues
https://orcid.org/0009-0007-7861-5274
https://orcid.org/0000-0002-1116-1964
https://orcid.org/0000-0003-3771-1749

build_model 3

table_shap_results . 34
table_sobol_jansen_results . 35

Index 36

build_model Create ML Model

Description

The function build_model() is designed to construct and attach a ML model to an existing analysis
object,which contains the preprocessed dataset generated in the previous step using the preprocess-
ing() function. Based on the specified model type and optional hyperparameters, it supports several
popular algorithms—including Neural Network, Random Forest, XGBOOST, and SVM (James
et al., 2021)— by initializing the corresponding hyperparameter class, updating the analysis object
with these settings, and invoking the appropriate model creation function. For SVM models, it
further distinguishes between kernel types (rbf, polynomial, linear) to ensure the correct implemen-
tation. The function also updates the analysis object with the model name, the fitted model, and the
current processing stage before returning the enriched object, thereby streamlining the workflow for
subsequent training, evaluation, or prediction steps. This modular approach facilitates flexible and
reproducible ML pipelines by encapsulating both the model and its configuration within a single
structured object.

Usage

build_model(analysis_object, model_name, hyperparameters = NULL)

Arguments

analysis_object

analysis_object created from preprocessing function.

model_name Name of the ML Model. A string of the model name: "Neural Network", "Ran-
dom Forest", "SVM" or "XGBOOST".

hyperparameters

Hyperparameters of the ML model. List containing the name of the hyperpa-
rameter and its value or range of values.

Value

An updated analysis_object containing the fitted machine learning model, the model name, the spec-
ified hyperparameters, and the current processing stage. This enriched object retains all previously
stored information from the preprocessing step and incorporates the results of the model-building
process, ensuring a coherent and reproducible workflow for subsequent training, evaluation, or pre-
diction tasks.

4 build_model

Hyperparameters

Neural Network:
Parsnip model using brulee engine. Hyperparameters:

• hidden_units: Number of Hidden Neurons. A single value, a vector with range values
c(min_val, max_val) or NULL for default range c(5, 20).

• activation: Activation Function. A vector with any of ("relu", "sigmoid", "tanh") or NULL
for default values c("relu", "sigmoid", "tanh").

• learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(-3, -1) in log10 scale.

Random Forest:
Parsnip model using ranger engine. Hyperparameters:

• trees: Number of Trees. A single value, a vector with range values c(min_val, max_val).
Default range c(100, 300).

• mtry: Number of variables randomly selected as candidates at each split. A single value, a
vector with range values c(min_val, max_val) or NULL for default range c(3, 8).

• min_n: Minimum Number of samples to split at each node. A single value, a vector with
range values c(min_val, max_val) or NULL for default range c(5, 25).

XGBOOST:
Parsnip model using xgboost engine. Hyperparameters:

• trees: Number of Trees. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(100, 300).

• mtry: Number of variables randomly selected as candidates at each split. A single value, a
vector with range values c(min_val, max_val) or NULL for default range c(3, 8).

• min_n: Minimum Number of samples to split at each node. A single value, a vector with
range values c(min_val, max_val) or NULL for default range c(5, 25).

• tree_depth: Maximum tree depth. A single value, a vector with range values c(min_val,
max_val) or NULL for default range c(3, 8).

• learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val)
or NULL for default range c(-3, -1) in log10 scale.

• loss_reduction: Minimum loss reduction required to make a further partition on a leaf node.
A single value, a vector with range values c(min_val, max_val) or NULL for default range
c(-3, 1.5) in log10 scale.

SVM:
Parsnip model using kernlab engine. Hyperparameters:

• cost: Penalty parameter that regulates model complexity and misclassification tolerance. A
single value, a vector with range values c(min_val, max_val) or NULL for default range
c(-3, 3) in log2 scale.

• margin: Distance between the separating hyperplane and the nearest data points. A single
value, a vector with range values c(min_val, max_val) or NULL for default range c(0, 0.2).

• type: Kernel to be used. A single value from ("linear", "rbf", "polynomial"). Default: "lin-
ear".

build_model 5

• rbf_sigma: A single value, a vector with range values c(min_val, max_val) or NULL for
default range c(-5, 0) in log10 scale.

• degree: Polynomial Degree (polynomial kernel only). A single value, a vector with range
values c(min_val, max_val) or NULL for default range c(1, 3).

• scale_factor: Scaling coefficient applied to inputs. (polynomial kernel only) A single value,
a vector with range values c(min_val, max_val) or NULL for default range c(-5, -1) in
log10 scale.

References

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning:
with Applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1

Examples

Example 1: Random Forest for regression task

set.seed(123) # For reproducibility
wrap_object <- preprocessing(

df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience + life_sat,
task = "regression"
)

wrap_object <- build_model(
analysis_object = wrap_object,
model_name = "Random Forest",
hyperparameters = list(

mtry = 2,
trees = 10
)

)
It is safe to reuse the same object name (e.g., wrap_object, or whatever)
step by step, as all previous results and information are retained within
the updated analysis object.

Example 2: SVM for classification task

set.seed(123) # For reproducibility
wrap_object <- preprocessing(

df = sim_data,
formula = psych_well_bin ~ depression + emot_intel + resilience + life_sat,
task = "classification"
)

wrap_object <- build_model(
analysis_object = wrap_object,
model_name = "SVM",
hyperparameters = list(

type = "rbf",
cost = 1,
margin = 0.1,

6 fine_tuning

rbf_sigma = 0.05
)

)

fine_tuning Fine Tune ML Model

Description

The fine_tuning() function performs automated hyperparameter optimization for ML workflows en-
capsulated within an AnalysisObject. It supports different tuning strategies, such as Bayesian Op-
timization (with cross-validation) and Grid Search Cross-Validation, allowing the user to specify
evaluation metrics and whether to visualize tuning results. The function first validates arguments
and updates the workflow and metric settings within the AnalysisObject. If hyperparameter tuning is
enabled, it executes the selected tuning procedure, identifies the best hyperparameter configuration
based on the specified metrics, and updates the workflow accordingly. For neural network models,
it also manages the creation and integration of new model instances and provides additional visual-
ization of training dynamics. Finally, the function fits the optimized model to the training data and
updates the AnalysisObject, ensuring a reproducible and efficient model selection process (Bartz et
al., 2023).

Usage

fine_tuning(analysis_object, tuner, metrics = NULL, verbose = FALSE)

Arguments

analysis_object

analysis_object created from build_model function.

tuner Name of the Hyperparameter Tuner. A string of the tuner name: "Bayesian
Optimization" or "Grid Search CV".

metrics Metric used for Model Selection. A string of the name of metric (see Metrics).
By default either "rmse" (regression) or "roc_auc" (classification).

verbose Whether to show tuning process. Boolean TRUE or FALSE (default).

Value

An updated analysis_object containing the fitted model with optimized hyperparameters, the tuning
results, and all relevant workflow modifications. This object includes the final trained model, the
best hyperparameter configuration, tuning diagnostics, and, if applicable, plots of the tuning pro-
cess. It can be used for further model evaluation, prediction, or downstream analysis within the
package workflow.

fine_tuning 7

Tuners

Bayesian Optimization (with cross-validation):

• Number of Folds: 5
• Initial data points: 20
• Maximum number of iterations: 25
• Convergence after 5 iterations without improvement
• Train / Test : 0.75 / 0.25

Grid Search CV:

• Number of Folds: 5
• Maximum levels per hyperparameter: 10
• Train / Test : 0.75 / 0.25

Metrics

Regression Metrics:

• rmse
• mae
• mpe
• mape
• ccc
• smape
• rpiq
• rsq

Classification Metrics:

• accuracy
• bal_accuracy
• recall
• sensitivity
• specificity
• kap
• f_meas
• mcc
• j_index
• detection_prevalence
• roc_auc
• pr_auc
• gain_capture
• brier_class
• roc_aunp

8 plot_calibration_curve

References

Bartz, E., Bartz-Beielstein, T., Zaefferer, M., & Mersmann, O. (2023). Hyperparameter tuner for
Machine and Deep Learning with R. A Practical Guide. Springer, Singapore. https://doi.org/10.1007/978-
981-19-5170-1

Examples

Fine tuning function applied to a regression task using Random Forest

set.seed(123) # For reproducibility
wrap_object <- preprocessing(

df = sim_data[1:500 ,],
formula = psych_well ~ depression + life_sat,
task = "regression"
)

wrap_object <- build_model(
analysis_object = wrap_object,
model_name = "Random Forest",
hyperparameters = list(

mtry = 2,
trees = 3
)

)
wrap_object <- fine_tuning(wrap_object,

tuner = "Grid Search CV",
metrics = c("rmse")
)

plot_calibration_curve

Plotting Calibration Curve

Description

The plot_calibration_curve() function is specifically designed for binary classification and pro-
duces calibration curves that evaluate correspondence between predicted probabilities and observed
frequencies. This function is restricted to binary classification problems and provides crucial infor-
mation about the reliability of the model’s probabilistic estimates.

Usage

plot_calibration_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

plot_confusion_matrix 9

Value

analysis_object

Examples

Note: For obtaining the calibration curve plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline and
only with binary outcome.

set.seed(123) # For reproducibility
wrap_object <- preprocessing(df = sim_data[1:300 ,],

formula = psych_well_bin ~ depression + resilience,
task = "classification")

wrap_object <- build_model(wrap_object, "Random Forest",
hyperparameters = list(mtry = 2, trees = 5))

wrap_object <- fine_tuning(wrap_object, "Grid Search CV")

And then, you can obtain the calibration curve plot.

plot_calibration_curve(wrap_object)

plot_confusion_matrix Plotting Confusion Matrix

Description

The plot_confusion_matrix() function generates confusion matrices for both training and test data
in classification problems. This visualization allows evaluation of classification accuracy by cate-
gory and identification of confusion patterns between classes, providing insights into which classes
are most frequently misclassified.

Usage

plot_confusion_matrix(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

10 plot_distribution_by_class

Examples

Note: For obtaining confusion matrix plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline and
only with categorical outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_confusion_matrix(wrap_object)

plot_distribution_by_class

Plotting Output Distribution By Class

Description

The plot_distribution_by_class() function generates distributions of model output scores seg-
mented by class, facilitating evaluation of separability between categories and identification of prob-
lematic overlaps. This visualization helps assess whether the model produces sufficiently distinct
score distributions for different classes.

Usage

plot_distribution_by_class(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

Examples

Note: For obtaining the distribution by class plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline
and only with categorical outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_distribution_by_class(wrap_object)

plot_gain_curve 11

plot_gain_curve Plotting Gain Curve

Description

The plot_gain_curve() function implements specialized visualizations for evaluating model effec-
tiveness in marketing and case selection contexts. The gain curve shows cumulative gains as a
function of population percentile, helping assess how well the model identifies high-value cases in
ranked populations.

Usage

plot_gain_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

Examples

Note: For obtaining the gain curve plot the user needs to complete till fine_tuning() function
of the MLwrap pipeline and only with categorical outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_gain_curve(wrap_object)

plot_graph_nn Plot Neural Network Architecture

Description

Plots a graph visualization of the Neural Network’s architecture along with its optimized hyperpa-
rameters.

12 plot_integrated_gradients

Usage

plot_graph_nn(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the Neural Network architecture graph plot the user needs
to complete till the fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
(Neural Network engine required)
Final call signature:
plot_graph_nn(wrap_object)

plot_integrated_gradients

Plotting Integrated Gradients Plots

Description

The plot_integrated_gradients() function replicates the SHAP visualization structure for inte-
grated gradient values, providing the same four graphical modalities adapted to this specific inter-
pretability methodology for neural networks. This function is particularly valuable for understand-
ing feature importance in deep learning architectures where gradients provide direct information
about model sensitivity.

Usage

plot_integrated_gradients(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Integrated Gradi-
ents")’.

show_table Boolean. Whether to print Integrated Gradients summarized results table.

plot_lift_curve 13

Value

analysis_object

See Also

sensitivity_analysis

Examples

Note: For obtaining the Integrated Gradients plot the user needs to
complete till sensitivity_analysis() function of the MLwrap pipeline
using the Integrated Gradients method.

See the full pipeline example under sensitivity_analysis()
(Requires sensitivity_analysis(methods = "Integrated Gradients"))
Final call signature:
plot_integrated_gradients(wrap_object)

plot_lift_curve Plotting Lift Curve

Description

The plot_lift_curve() function produces lift curves that display the lift factor as a function of popu-
lation percentile. This visualization is particularly useful for direct marketing applications, showing
how much better the model performs compared to random selection at different population seg-
ments.

Usage

plot_lift_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

14 plot_loss_curve

Examples

Note: For obtaining the lift curve plot the user needs to complete till
fine_tuning() function of the MLwrap pipeline and only with categorical
outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_lift_curve(wrap_object)

plot_loss_curve Plot Neural Network Loss Curve

Description

Plots the training loss curve of the Neural Network model on the validation set. This plot can be
used for underfitting / overfitting diagnostics.

Usage

plot_loss_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the loss curve plot the user needs to
complete till the fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
(Neural Network engine required)
Final call signature:
plot_loss_curve(wrap_object)

plot_olden 15

plot_olden Plotting Olden Values Barplot

Description

The plot_olden() function generates specialized bar plots for visualizing Olden method results,
which provide importance measures specific to neural networks based on connection weight analy-
sis. This method offers insights into how input variables influence predictions through the network’s
synaptic connections.

Usage

plot_olden(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Olden")’.

show_table Boolean. Whether to print Olden results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples

Note: For obtaining the Olden plot the user needs to complete till
sensitivity_analysis() function of the MLwrap pipeline using the Olden
method.

See the full pipeline example under sensitivity_analysis()
(Requires sensitivity_analysis(methods = "Olden"))
Final call signature:
plot_olden(wrap_object)

16 plot_pfi

plot_pfi Plotting Permutation Feature Importance Barplot

Description

The plot_pfi() function generates bar plots to visualize feature importance through permutation,
providing clear representation of each predictor variable’s relative contribution to model perfor-
mance. The function includes an option to display accompanying numerical results tables for com-
prehensive interpretation.

Usage

plot_pfi(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "PFI")’.

show_table Boolean. Whether to print PFI results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples

Note: For obtaining the PFI plot results the user needs to complete till
sensitivity_analysis() function of the MLwrap pipeline using the PFI method.

See the full pipeline example under sensitivity_analysis()
(Requires sensitivity_analysis(methods = "PFI"))
Final call signature:
plot_pfi(wrap_object)

plot_pr_curve 17

plot_pr_curve Plotting Precision-Recall Curve

Description

The plot_pr_curve() function generates precision-recall curves, which are particularly valuable for
evaluating classifier performance on imbalanced datasets. These curves show the relationship be-
tween precision and recall across different decision thresholds, complementing ROC curve analysis.

Usage

plot_pr_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

Examples

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_pr_curve(wrap_object)

plot_residuals_distribution

Plotting Residuals Distribution

Description

The plot_residuals_distribution() function generates histograms of residual distributions for both
training and test data in regression problems. This visualization enables evaluation of error normal-
ity and detection of systematic patterns in model residuals. The function uses patchwork to combine
training and test plots in a single display for direct comparison.

Usage

plot_residuals_distribution(analysis_object)

18 plot_roc_curve

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the residuals distribution plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
Final call signature:
plot_residuals_distribution(wrap_object)

plot_roc_curve Plotting ROC Curve

Description

The plot_roc_curve() function produces ROC (Receiver Operating Characteristic) curves, provid-
ing fundamental visual metrics for evaluating binary and multiclass classifier performance. The
ROC curve illustrates the trade-off between true positive rate and false positive rate across different
classification thresholds.

Usage

plot_roc_curve(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

plot_calibration_curve

plot_scatter_predictions 19

Examples

Note: For obtaining roc curve plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline and
only with categorical outcome.

See the full pipeline example under plot_calibration_curve()
Final call signature:
plot_roc_curve(wrap_object)

plot_scatter_predictions

Plotting Observed vs Predictions

Description

The plot_scatter_predictions() function generates scatter plots between observed and predicted
values, providing direct visual assessment of model predictive accuracy. The function displays both
training and test results side by side, enabling evaluation of model generalization performance and
identification of potential overfitting.

Usage

plot_scatter_predictions(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the observed vs. predicted values plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
Final call signature:
plot_scatter_predictions(wrap_object)

20 plot_scatter_residuals

plot_scatter_residuals

Plotting Residuals vs Predictions

Description

The plot_scatter_residuals() function produces scatter plots relating residuals to predictions, facil-
itating identification of heteroscedasticity and non-linear patterns in model errors. This diagnostic
plot is essential for validating regression model assumptions and detecting potential issues with
model specification or data quality.

Usage

plot_scatter_residuals(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the residuals vs. predicted values plot the user needs to
complete till fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
Final call signature:
plot_scatter_residuals(wrap_object)

plot_shap 21

plot_shap Plotting SHAP Plots

Description

The plot_shap() function implements a comprehensive set of visualizations for SHAP values, in-
cluding bar plots of mean absolute values, directional plots showing positive or negative contribu-
tion nature, box plots illustrating SHAP value distributions by variable, and swarm plots combining
individual and distributional information. This multifaceted approach enables deep understanding
of how each feature influences model predictions.

Usage

plot_shap(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "SHAP")’.

show_table Boolean. Whether to print SHAP summarized results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples

Note: For obtaining the SHAP plots the user needs to complete till
sensitivity_analysis() function of the MLwrap pipeline using the SHAP method.

See the full pipeline example under sensitivity_analysis()
(Requires sensitivity_analysis(methods = "SHAP"))
Final call signature:
plot_shap(wrap_object)

22 plot_sobol_jansen

plot_sobol_jansen Plotting Sobol-Jansen Values Barplot

Description

The plot_sobol_jansen() function produces bar plots for Sobol-Jansen analysis results, offering a
global sensitivity perspective based on variance decomposition. This methodology is particularly
valuable for identifying higher-order effects and complex interactions between variables in model
predictions.

Usage

plot_sobol_jansen(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Sobol_Jansen")’.

show_table Boolean. Whether to print Sobol-Jansen results table.

Value

analysis_object

See Also

sensitivity_analysis

Examples

Note: For obtaining the Sobol_Jansen plot the user needs to complete till
sensitivity_analysis() function of the MLwrap pipeline using
the Sobol_Jansen method.

See the full pipeline example under sensitivity_analysis()
(Requires sensitivity_analysis(methods = "Sobol_Jansen"))
Final call signature:
plot_sobol_jansen(wrap_object)

plot_tuning_results 23

plot_tuning_results Plotting Tuner Search Results

Description

The plot_tuning_results() function generates graphical representations of hyperparameter search
results, automatically adapting to the type of optimizer used. When Bayesian optimization is em-
ployed, the function presents additional plots showing the iterative evolution of the loss function
and search results throughout the optimization process. This function validates that model fitting
has been completed and that hyperparameter tuning was actually performed before attempting to
display results.

Usage

plot_tuning_results(analysis_object)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

Value

analysis_object

See Also

table_best_hyperparameters

Examples

Note: For obtaining the plot with tuning results the user needs to complete till
fine_tuning() function of the MLwrap pipeline.

See the full pipeline example under table_best_hyperparameters()
Final call signature:
plot_tuning_results(wrap_object)

24 preprocessing

preprocessing Preprocessing Data Matrix

Description

The preprocessing() function streamlines data preparation for regression and classification tasks
by integrating variable selection, type conversion, normalization, and categorical encoding into a
single workflow. It takes a data frame and a formula, applies user-specified transformations to
numeric and categorical variables using the recipes package, and ensures the outcome variable is
properly formatted. The function returns an AnalysisObject containing both the processed data and
the transformation pipeline, supporting reproducible and efficient modeling (Kuhn & Wickham,
2020).

Usage

preprocessing(
df,
formula,
task = "regression",
num_vars = NULL,
cat_vars = NULL,
norm_num_vars = "all",
encode_cat_vars = "all",
y_levels = NULL

)

Arguments

df Input DataFrame. Either a data.frame or tibble.

formula Modelling Formula. A string of characters or formula.

task Modelling Task. Either "regression" or "classification".

num_vars Optional vector of names of the numerical features.

cat_vars Optional vector of names of the categorical features.

norm_num_vars Normalize numeric features as z-scores. Either vector of names of numerical
features to be normalized or "all" (default).

encode_cat_vars

One Hot Encode Categorical Features. Either vector of names of categorical
features to be encoded or "all" (default).

y_levels Optional ordered vector with names of the target variable levels (Classification
task only).

preprocessing 25

Value

The object returned by the preprocessing function encapsulates a dataset specifically prepared for
ML analysis. This object contains the preprocessed data—where variables have been selected,
standardized, encoded, and formatted according to the requirements of the chosen modeling task
(regression or classification) —as well as a recipes::recipe object that documents all preprocessing
steps applied. By automating essential transformations such as normalization, one-hot encoding of
categorical variables, and the handling of missing values, the function ensures the data is optimally
structured for input into machine learning algorithms. This comprehensive preprocessing not only
exposes the underlying structure of the data and reduces the risk of errors, but also provides a robust
foundation for subsequent modeling, validation, and interpretation within the machine learning
workflow (Kuhn & Johnson, 2019).

References

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A Practical Approach for
Predictive Models (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315108230

Kuhn, M., & Wickham, H. (2020). Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles. https://www.tidymodels.org.

Examples

Example 1: Dataset with preformatted categorical variables
In this case, internal options for variable types are not needed since categorical features
are already formatted as factors.

library(MLwrap)

data(sim_data) # sim_data is a simulated dataset with psychological variables

wrap_object <- preprocessing(
df = sim_data,
formula = psych_well ~ depression + emot_intel + resilience + life_sat + gender,
task = "regression"
)

Example 2: Dataset where neither the outcome nor the categorical features are formatted as factors
and all categorical variables are specified to be formatted as factors

wrap_object <- preprocessing(
df = sim_data,
formula = psych_well_bin ~ gender + depression + age + life_sat,
task = "classification",
cat_vars = c("gender")

)

26 sensitivity_analysis

sensitivity_analysis Perform Sensitivity Analysis and Interpretable ML methods

Description

As the final step in the MLwrap package workflow, this function performs Sensitivity Analysis
(SA) on a fitted ML model stored in an analysis_object (in the examples, e.g., tidy_object). It
evaluates the importance of features using various methods such as Permutation Feature Importance
(PFI), SHAP (SHapley Additive exPlanations), Integrated Gradients, Olden sensitivity analysis, and
Sobol indices. The function generates numerical results and visualizations (e.g., bar plots, box plots,
beeswarm plots) to help interpret the impact of each feature on the model’s predictions for both
regression and classification tasks, providing critical insights after model training and evaluation.

Following the steps of data preprocessing, model fitting, and performance assessment in the ML-
wrap pipeline, sensitivity_analysis() processes the training and test data using the preprocessing
recipe stored in the analysis_object, applies the specified SA methods, and stores the results within
the analysis_object. It supports different metrics for evaluation and handles multi-class classifi-
cation by producing class-specific analyses and plots, ensuring a comprehensive understanding of
model behavior (Iooss & Lemaître, 2015).

Usage

sensitivity_analysis(analysis_object, methods = c("PFI"), metric = NULL)

Arguments

analysis_object

analysis_object created from fine_tuning function.

methods Method to be used. A string of the method name: "PFI" (Permutation Feature
Importance), "SHAP" (SHapley Additive exPlanations), "Integrated Gradients"
(Neural Network only), "Olden" (Neural Network only), "Sobol_Jansen" (only
when all input features are continuous).

metric Metric used for "PFI" method (Permutation Feature Importance). A string of the
name of metric (see Metrics).

Details

As the concluding phase of the MLwrap workflow—after data preparation, model training, and eval-
uation—this function enables users to interpret their models by quantifying and visualizing feature
importance. It first validates the input arguments using check_args_sensitivity_analysis().
Then, it preprocesses the training and test data using the recipe stored in analysis_object$transformer.
Depending on the specified methods, it calculates feature importance using:

• PFI (Permutation Feature Importance): Assesses importance by shuffling feature values
and measuring the change in model performance (using the specified or default metric).

• SHAP (SHapley Additive exPlanations): Computes SHAP values to explain individual pre-
dictions by attributing contributions to each feature.

sensitivity_analysis 27

• Integrated Gradients: Evaluates feature importance by integrating gradients of the model’s
output with respect to input features.

• Olden: Calculates sensitivity based on connection weights, typically for neural network mod-
els, to determine feature contributions.

• Sobol_Jansen: Performs variance-based global sensitivity analysis by decomposing the model
output variance into contributions from individual features and their interactions, quantifying
how much each feature and combination of features accounts for the variability in predic-
tions. Only for continuous outcomes, not for categorical. Specifically, estimates first-order
and total-order Sobol’ sensitivity indices simultaneously using the Jansen (1999) Monte Carlo
estimator.

For classification tasks with more than two outcome levels, the function generates separate results
and plots for each class. Visualizations include bar plots for importance metrics, box plots for
distribution of values, and beeswarm plots for detailed feature impact across observations. All
results are stored in the analysis_object under the sensitivity_analysis slot, finalizing the
MLwrap pipeline with a deep understanding of model drivers.

Value

An updated analysis_object with the results of the sensitivity analysis stored in the sensitivity_analysis
slot as a list. Each method’s results are accessible under named elements (e.g., sensitivity_analysis[["PFI"]]).
Additionally, the function produces various plots (bar plots, box plots, beeswarm plots) for visual
interpretation of feature importance, tailored to the task type and number of outcome levels, com-
pleting the MLwrap workflow with actionable model insights.

References

Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In C. Meloni
& G. Dellino (Eds.), Uncertainty Management in Simulation-Optimization of Complex Systems:
Algorithms and Applications (pp. 101-122). Springer. https://doi.org/10.1007/978-1-4899-7547-
8_5

Jansen, M. J. W. (1999). Analysis of variance designs for model output. Computer Physics Com-
munications, 117(1-2), 35–43. https://doi.org/10.1016/S0010-4655(98)00154-4

Examples

Example: Using PFI

set.seed(123) # For reproducibility
wrap_object <- preprocessing(

df = sim_data,
formula = psych_well ~ depression + life_sat,
task = "regression"
)

wrap_object <- build_model(
analysis_object = wrap_object,
model_name = "Random Forest",
hyperparameters = list(

mtry = 2,
trees = 3

28 sim_data

)
)

wrap_object <- fine_tuning(wrap_object,
tuner = "Grid Search CV",
metrics = c("rmse")
)

wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")

Extracting Results

table_pfi <- table_pfi_results(wrap_object)

sim_data sim_data

Description

This dataset, included in the MLwrap package, is a simulated dataset (Martínez et al., 2025) de-
signed to capture relationships among psychological and demographic variables influencing psy-
chological wellbeing, the primary outcome variable. It comprises data for 1,000 individuals.

Usage

data(sim_data)

Format

A data frame with 1,000 rows and 10 columns:

psych_well Psychological Wellbeing Indicator. Continuous with (0,100)

psych_well_bin Psychological Wellbeing Binary Indicator. Factor with ("Low", "High")

psych_well_pol Psychological Wellbeing Polytomic Indicator. Factor with ("Low", "Somewhat",
"Quite a bit", "Very Much")

gender Patient Gender. Factor ("Female", "Male")

age Patient Age. Continuous (18, 85)

socioec_status Socioeconomial Status Indicator. Factor ("Low", "Medium", "High")

emot_intel Emotional Intelligence Indicator. Continuous (24, 120)

resilience Resilience Indicator. Continuous (4, 20)

depression Depression Indicator. Continuous (0, 63)

life_sat Life Satisfaction Indicator. Continuous (5, 35)

table_best_hyperparameters 29

Details

The predictor variables include gender (50.7% female), age (range: 18-85 years, mean = 51.63,
median = 52, SD = 17.11), and socioeconomic status, categorized as Low (n = 343), Medium (n =
347), and High (n = 310). Additional predictors are emotional intelligence (range: 24-120, mean =
71.97, median = 71, SD = 23.79), resilience (range: 4-20, mean = 11.93, median = 12, SD = 4.46),
life satisfaction (range: 5-35, mean = 20.09, median = 20, SD = 7.42), and depression (range: 0-63,
mean = 31.45, median = 32, SD = 14.85). The primary outcome variable is emotional wellbeing,
measured on a scale from 0 to 100 (mean = 50.22, median = 49, SD = 24.45).

The dataset incorporates correlations as conditions for the simulation. Psychological wellbeing is
positively correlated with emotional intelligence (r = 0.50), resilience (r = 0.40), and life satisfac-
tion (r = 0.60), indicating that higher levels of these factors are associated with better emotional
health outcomes. Conversely, a strong negative correlation exists between depression and psycho-
logical wellbeing (r = -0.80), suggesting that higher depression scores are linked to lower emotional
wellbeing. Age shows a slight positive correlation with emotional wellbeing (r = 0.15), reflecting
the expectation that older individuals might experience greater emotional stability. Gender and so-
cioeconomic status are included as potential predictors, but the simulation assumes no statistically
significant differences in psychological wellbeing across these categories.

Additionally, the dataset includes categorical transformations of psychological wellbeing into bi-
nary and polytomous formats: a binary version ("Low" = 477, "High" = 523) and a polytomous
version with four levels: "Low" (n = 161), "Somewhat" (n = 351), "Quite a bit" (n = 330), and
"Very much" (n = 158). The polytomous transformation uses the 25th, 50th, and 75th percentiles as
thresholds for categorizing psychological wellbeing scores. These transformations enable analyses
using machine learning models for regression (continuous outcome) and classification (binary or
polytomous outcomes) tasks.

Note

This paper is also interesting for ML users as it serves as a primer for estimating ML models using
Python code, particularly in the context of Social, Health, and Behavioral research.

References

Martínez-García, J., Montaño, J.J., Jiménez, R., Gervilla, E., Cajal, B., Núñez-Prats, A., Leguizamo-
Barroso, F., & Sesé, A. (2025). Decoding Artificial Intelligence: A tutorial on Neural Networks in
Behavioral Research. Clinical and Health, 36(2), 77-95. https://doi.org/10.5093/clh2025a13

table_best_hyperparameters

Best Hyperparameters Configuration

Description

The table_best_hyperparameters() function extracts and presents the optimal hyperparameter
configuration identified during the model fine-tuning process. This function validates that the model
has been properly trained and that hyperparameter tuning has been performed, combining both con-
stant and optimized hyperparameters to generate a comprehensive table with the configuration that

30 table_evaluation_results

maximizes performance according to the specified primary metric. The function includes optional
interactive visualization capabilities through the show_table parameter.

Usage

table_best_hyperparameters(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.

show_table Boolean. Whether to print the table.

Value

Tibble with best hyperparameter configuration.

Examples

Note: For obtaining hyoperparameters table the user needs to
complete till fine_tuning() function.

set.seed(123) # For reproducibility
wrap_object <- preprocessing(df = sim_data[1:300 ,],

formula = psych_well ~ depression + resilience,
task = "regression")

wrap_object <- build_model(wrap_object, "Random Forest",
hyperparameters = list(mtry = 2, trees = 3))

wrap_object <- fine_tuning(wrap_object, "Grid Search CV")

And then, you can obtain the best hyperparameters table.

table_best_hyp <- table_best_hyperparameters(wrap_object)

table_evaluation_results

Evaluation Results

Description

The table_evaluation_results() function provides access to trained model evaluation metrics, au-
tomatically adapting to the type of problem being analyzed. For binary classification problems, it
returns a unified table with performance metrics, while for multiclass classification it generates sep-
arate tables for training and test data, enabling comparative performance evaluation and detection
of potential overfitting.

Usage

table_evaluation_results(analysis_object, show_table = FALSE)

table_integrated_gradients_results 31

Arguments

analysis_object

Fitted analysis_object with ’fine_tuning()’.
show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with evaluation results.

See Also

table_best_hyperparameters

Examples

Note: For obtaining the evaluation table the user needs to
complete till fine_tuning() function.

See the full pipeline example under table_best_hyperparameters()
Final call signature:
table_evaluation_results(wrap_object)

table_integrated_gradients_results

Integrated Gradients Summarized Results Table

Description

The table_integrated_gradients_results() function implements the same summarized metrics scheme
for Integrated Gradients values, a methodology specifically designed for neural networks that cal-
culates feature importance through gradient integration along paths from a baseline to the current
input. To summarize the Integrated Gradients values calculated, three different metrics are com-
puted:

• Mean Absolute Value
• Standard Deviation of Mean Absolute Value
• Directional Sensitivity Value (Cov(Feature values, IG values) / Var(Feature values))

Usage

table_integrated_gradients_results(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Integrated Gradi-
ents")’.

show_table Boolean. Whether to print the table.

32 table_olden_results

Value

Tibble or list of tibbles (multiclass classification) with Integrated Gradient summarized results.

See Also

sensitivity_analysis

Examples

Note: For obtaining the table with Integrated Gradients method results
the user needs to complete till sensitivity_analysis() function of the
MLwrap pipeline using the Integrated Gradient method.

See the full pipeline example under sensitivity_analysis
(Requires sensitivity_analysis(methods = "Integrated Gradients"))
Final call signature:
table_integrated_gradients_results(wrap_object)

table_olden_results Olden Results Table

Description

The table_olden_results() function extracts results from the Olden method, a technique specific to
neural networks that calculates relative importance of input variables through analysis of connection
weights between network layers. This method provides a measure of each variable’s contribution
based on the magnitude and direction of synaptic connections.

Usage

table_olden_results(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Olden")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with Olden results.

See Also

sensitivity_analysis

table_pfi_results 33

Examples

Note: For obtaining the table with Olden method results the user needs to
complete till sensitivity_analysis() function of the MLwrap pipeline using
the Olden method. Remember Olden method only can be used with neural
network model.

See the full pipeline example under sensitivity_analysis
(Requires sensitivity_analysis(methods = "Olden"))
Final call signature:
table_olden_results(wrap_object)

table_pfi_results Permutation Feature Importance Results Table

Description

The table_pfi_results() function extracts Permutation Feature Importance results, a model-agnostic
technique that evaluates variable importance through performance degradation when randomly per-
muting each feature’s values.

Usage

table_pfi_results(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "PFI")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with PFI results.

Examples

Note: For obtaining the table with PFI method results the user needs to
complete till sensitivity_analysis() function of the
MLwrap pipeline using PFI method

set.seed(123) # For reproducibility
wrap_object <- preprocessing(df = sim_data[1:300 ,],

formula = psych_well ~ depression + emot_intel,
task = "regression")

wrap_object <- build_model(wrap_object, "Random Forest",
hyperparameters = list(mtry = 2, trees = 3))

wrap_object <- fine_tuning(wrap_object, "Grid Search CV")
wrap_object <- sensitivity_analysis(wrap_object, methods = "PFI")

34 table_shap_results

And then, you can obtain the PFI results table.

table_pfi <- table_pfi_results(wrap_object)

table_shap_results SHAP Summarized Results Table

Description

The table_shap_results() function processes previously calculated SHAP (SHapley Additive ex-
Planations) values and generates summarized metrics including mean absolute value, standard de-
viation of mean absolute value, and a directional sensitivity value calculated as the covariance
between feature values and SHAP values divided by the variance of feature values. This directional
metric provides information about the nature of the relationship between each variable and model
predictions. To summarize the SHAP values calculated, three different metrics are computed:

• Mean Absolute Value
• Standard Deviation of Mean Absolute Value
• Directional Sensitivity Value (Cov(Feature values, SHAP values) / Var(Feature values))

Usage

table_shap_results(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "SHAP")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with SHAP summarized results.

See Also

sensitivity_analysis

Examples

Note: For obtaining the table with SHAP method results the user needs
to complete till sensitivity_analysis() function of the
MLwrap pipeline using the SHAP method.

See the full pipeline example under sensitivity_analysis
(Requires sensitivity_analysis(methods = "SHAP"))

table_sobol_jansen_results 35

Final call signature:
table_shap_results(wrap_object)

table_sobol_jansen_results

Sobol-Jansen Results Table

Description

The table_sobol_jansen_results() function processes results from Sobol-Jansen global sensitivity
analysis, a variance decomposition-based methodology that quantifies each variable’s contribution
and their interactions to the total variability of model predictions. This technique is particularly
valuable for identifying higher-order effects and complex interactions between variables.

Usage

table_sobol_jansen_results(analysis_object, show_table = FALSE)

Arguments

analysis_object

Fitted analysis_object with ’sensitivity_analysis(methods = "Sobol_Jansen")’.

show_table Boolean. Whether to print the table.

Value

Tibble or list of tibbles (multiclass classification) with Sobol-Jansen results.

See Also

sensitivity_analysis

Examples

Note: For obtaining the table with Sobol_Jansen method results the user
needs to complete till sensitivity_analysis() function of the MLwrap
pipeline using the Sobol_Jansen method. Sobol_Jansen method only works
when all input features are continuous.

See the full pipeline example under sensitivity_analysis
(Requires sensitivity_analysis(methods = "Sobol_Jansen"))
Final call signature:
table_sobol_jansen_results(wrap_object)

Index

build_model, 3

fine_tuning, 6

plot_calibration_curve, 8, 9–11, 13, 17,
18

plot_confusion_matrix, 9
plot_distribution_by_class, 10
plot_gain_curve, 11
plot_graph_nn, 11
plot_integrated_gradients, 12
plot_lift_curve, 13
plot_loss_curve, 14
plot_olden, 15
plot_pfi, 16
plot_pr_curve, 17
plot_residuals_distribution, 17
plot_roc_curve, 18
plot_scatter_predictions, 19
plot_scatter_residuals, 20
plot_shap, 21
plot_sobol_jansen, 22
plot_tuning_results, 23
preprocessing, 24

sensitivity_analysis, 13, 15, 16, 21, 22,
26, 32, 34, 35

sim_data, 28

table_best_hyperparameters, 12, 14,
18–20, 23, 29, 31

table_evaluation_results, 30
table_integrated_gradients_results, 31
table_olden_results, 32
table_pfi_results, 33
table_shap_results, 34
table_sobol_jansen_results, 35

36

	build_model
	fine_tuning
	plot_calibration_curve
	plot_confusion_matrix
	plot_distribution_by_class
	plot_gain_curve
	plot_graph_nn
	plot_integrated_gradients
	plot_lift_curve
	plot_loss_curve
	plot_olden
	plot_pfi
	plot_pr_curve
	plot_residuals_distribution
	plot_roc_curve
	plot_scatter_predictions
	plot_scatter_residuals
	plot_shap
	plot_sobol_jansen
	plot_tuning_results
	preprocessing
	sensitivity_analysis
	sim_data
	table_best_hyperparameters
	table_evaluation_results
	table_integrated_gradients_results
	table_olden_results
	table_pfi_results
	table_shap_results
	table_sobol_jansen_results
	Index

