
Package ‘arima2’
June 27, 2025

Title Likelihood Based Inference for ARIMA Modeling

Version 3.4.0

Description Estimating and analyzing auto regressive integrated moving average
(ARIMA) models. The primary function in this package is arima(), which fits
an ARIMA model to univariate time series data using a random restart
algorithm. This approach frequently leads to models that have model
likelihood greater than or equal to that of the likelihood obtained by
fitting the same model using the arima() function from the 'stats' package.
This package enables proper optimization of model likelihoods, which is a
necessary condition for performing likelihood ratio tests. This package
relies heavily on the source code of the arima() function of the 'stats'
package. For more information, please see Jesse Wheeler and Edward L.
Ionides (2023) <doi:10.48550/arXiv.2310.01198>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Imports ggplot2, methods

Depends R (>= 4.1.0)

LazyData true

BugReports https://github.com/jeswheel/arima2/issues/

NeedsCompilation yes

Author Jesse Wheeler [aut, cre, cph],
Noel McAllister [aut],
Dhajanae Sylvertooth [aut],
Edward Ionides [ctb],
Brian Ripley [ctb] (Author of arima source code in stats package.),
R Core Team [cph] (Author of arima source code in stats package.)

Maintainer Jesse Wheeler <jeswheel@umich.edu>

Repository CRAN

Date/Publication 2025-06-27 16:50:02 UTC

1

https://doi.org/10.48550/arXiv.2310.01198
https://github.com/jeswheel/arima2/issues/

2 aicTable

Contents
aicTable . 2
arima . 3
ARMApolyroots . 6
miHuron_level . 7
plot.Arima2 . 8
profile.Arima2 . 9
sample_ARMA_coef . 10

Index 12

aicTable ARIMA AIC table

Description

Construct table of AIC for all combinations 0<=p<=P and 0<=q<=Q

Usage

aicTable(data, P, Q, D = 0, ic = c("aic", "aicc"), ...)

Arguments

data a time series object, or a dataset that can be used as input into the arima function.

P a positive integer value representing the maximum number of AR coefficients
that should be included in the table.

Q a positive integer value representing the maximum number of MA coefficients
that should be included in the table.

D a positive integer value representing the degree of differencing

ic Information criterion to be used in the table.

... Additional arguments passed to arima().

Details

This function creates an AIC table for ARMA models of varying sizes. Each row for the table
corresponds to a different AR value, and each column of the table corresponds to a different MA
value.

Value

A matrix containing the model AIC values.

Examples

set.seed(654321)
aicTable(presidents, 3, 2)

arima 3

arima ARIMA Modeling of Time Series

Description

Fit an ARIMA model to a univariate time series. This function builds on the ARIMA model fitting
approach used in stats::arima() by fitting model parameters via a random restart algorithm.

Usage

arima(
x,
order = c(0L, 0L, 0L),
seasonal = list(order = c(0L, 0L, 0L), period = NA),
xreg = NULL,
include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL,
init = NULL,
method = c("CSS-ML", "ML", "CSS"),
init_method = c("DL", "UnifRoots"),
n.cond,
SSinit = c("Rossignol2011", "Gardner1980"),
optim.method = "BFGS",
optim.control = list(),
kappa = 1e+06,
diffuseControl = TRUE,
max_iters = 100,
max_repeats = 10,
max_inv_root = 1,
min_inv_root_dist = 0,
eps_tol = 1e-04

)

Arguments

x a univariate time series

order a specification of the non-seasonal part of the ARIMA model: the three integer
components (p, d, q) are the AR order, the degree of differencing, and the MA
order.

seasonal a specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This may be a list with components order and
period, or just a numeric vector of length 3 which specifies the seasonal order.
In the latter case the default period is used.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as x.

4 arima

include.mean logical indicating if the ARMA model should include a mean/intercept term.
The default is TRUE for undifferenced series, and it is ignored for ARIMA mod-
els with differencing.

transform.pars logical; if true, the AR parameters are transformed to ensure that they remain in
the region of stationarity. Not used for method = "CSS". For method = "ML", it
has been advantageous to set transform.pars = FALSE in some cases, see also
fixed.

fixed optional numeric vector of the same length as the total number of coefficients to
be estimated. It should be of the form

(ϕ1, . . . , ϕp, θ1, . . . , θq,Φ1, . . . ,ΦP ,Θ1, . . . ,ΘQ, µ),

where ϕi are the AR coefficients, θi are the MA coefficients, Φi are the seasonal
AR coefficients, Θi are the seasonal MA coefficients and µ is the intercept term.
Note that the µ entry is required if and only if include.mean is TRUE. In partic-
ular it should not be present if the model is an ARIMA model with differencing.
The entries of the fixed vector should consist of the values at which the user
wishes to “fix” the corresponding coefficient, or NA if that coefficient should not
be fixed, but estimated.
The argument transform.pars will be set to FALSE if any AR parameters are
fixed. A warning will be given if transform.pars is set to (or left at its default)
TRUE. It may be wise to set transform.pars = FALSE even when fixing MA
parameters, especially at values that cause the model to be nearly non-invertible.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-squares
to find starting values, then maximum likelihood. Can be abbreviated.

init_method Method used to randomly sample parameter initializations. init_method =
"DL" will sample parameters using the Durbin-Levinson algorithm, described
by Monahan (1984). If init_method = "UnifRoots", then inverted roots of AR
and MA polynomials will be sampled uniformly from the complex unit circle.

n.cond only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

SSinit a string specifying the algorithm to compute the state-space initialization of the
likelihood; see KalmanLike for details. Can be abbreviated.

optim.method The value passed as the method argument to optim.

optim.control List of control parameters for optim.

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model. Do not reduce this.

diffuseControl Boolean indicator of whether or initial observations will have likelihood values
ignored if controlled by the diffuse prior, i.e., have a Kalman gain of at least 1e4.

arima 5

max_iters Maximum number of random restarts for methods "CSS-ML" and "ML". If set
to 1, the results of this algorithm is the same as stats::arima() if argument
diffuseControl is also set as TRUE. max_iters is often not reached because
the condition max_repeats is typically achieved first.

max_repeats Integer. If the last max_repeats random starts did not result in improved likeli-
hoods, then stop the search. Each result of the optim function is only considered
to improve the likelihood if it does so by more than eps_tol.

max_inv_root positive numeric value less than or equal to 1. This number represents the max-
imum size of the inverted MA or AR polynomial roots for a new parameter
estimate to be considered an improvement to previous estimates. Concerns of
numeric stability arise when the size of polynomial roots are near unity circle.
The default value 1 means that the the parameter values corresponding with the
best log-likelihood will be returned, even if they are near unity. Suitable values
of this parameter are near the value 1.

min_inv_root_dist

positive numeric value less than 1. This number represents the minimum dis-
tance between AR and MA polynomial roots for a new parameter estimate to be
considered an improvement on previous estimates. This is intended to avoid the
possibility of returning parameter estimates with nearly canceling roots. Appro-
priate choices are values near 0.

eps_tol Tolerance for accepting a new solution to be better than a previous solution in
terms of log-likelihood. The default corresponds to a one ten-thousandth unit
increase in log-likelihood.

Value

A list of class c("Arima2", "Arima"). This list contains all of the same elements as the output of
stats::arima, along with some additional elements. All elements of the output list are:

coef A vector of AR, MA, and regression coefficients. These can be extracted by the stats::coef
method.

sigma2 The MLE of the variance of the innovations.

var.coef The estimated variance matrix of the coefficients coef, which can be extracted by the
stats::vcov method.

mask A vector containing boolean values, indicating which parameters of the model were esti-
mated.

loglik The maximized log-likelihood (of the differenced data).

aic The AIC value corresponding to the log-likelihood.

arma A compact form of the model specification, as a vector giving the number of AR, MA, sea-
sonal AR and seasonal MA coefficients, plus the period and the number of non-seasonal and
seasonal differences.

residuals The fitted innovations.

call The matched call.

series The name of the series x.

code The convergence value returned by stats::optim.

6 ARMApolyroots

n.cond The number of initial observations not used in the fitting.

nobs The number of observations used for the fitting.

model A list representing the Kalman Filter used in the fitting.

x The input time series.

num_starts Number of restarts before convergence criteria was satisfied.

all_values Numeric vector of length num_starts containing the loglikelihood of every parameter
initialization.

References

Monahan, John F. (1984) A note on enforcing stationarity in autoregressive-moving average models.
Biometrika, 71(2), 403–404.

Examples

example code
set.seed(12345)
arima(miHuron_level$Average, order = c(2, 0, 1), max_iters = 100)

ARMApolyroots ARMA polyroots

Description

This function calculates the roots of the AR or MA polynomials that correspond to an ARMA
model.

Usage

ARMApolyroots(model, type = c("AR", "MA"))

Arguments

model Either of fitted object of class Arima (i.e., the output of either stats::arima()
or arima), a list with named elements at least one of the named elements ar or
ma, or a vector with named elements, such as c("ar1" = 0.3, "ar2" = -0.2,
"ma1" = 0.14) Seasonal coefficients are ignored.

type character of value "AR" or "MA", indicating whether or not the AR or MA
polynomial roots are desired.

Value

A numeric vector containing the roots of the MA or AR polynomials

miHuron_level 7

Examples

set.seed(123456)
ARMApolyroots(sample_ARMA_coef((order = c(2, 1))), type = "AR")

mod <- arima(lh, order = c(3,0,0))
ARMApolyroots(mod, type = "AR")

miHuron_level Annual January levels of lake Michigan-Huron

Description

The dataset is a subset of the monthly average depth (ft) of lake Michigan-Huron. The data were
retrieved online from the Great Lakes Environmental Research Laboratory. Various measurement
gauges exist; this data was taken from the master gauge.

Usage

miHuron_level

Format

miHuron_level:
A data frame with 155 observations and two columns:

Date Date column that records when the observation was made.

Average numeric column representing the average depth in feet.

Source

NOAA. Annual January levels of lake Michigan-Huron. Great Lakes Environmental Research
Laboratory, https://www.glerl.noaa.gov/data/dashboard/data/levels/mGauge/miHuronMog.csv. Ac-
cessed 08/24/2023.

The original url used to obtain the data no longer exists, but a partial subset of the same data can be
found at https://www.greatlakescc.org/en/coordinating-committee-products-and-datasets/
under the subsection: Monthly Mean Water Levels.

https://www.greatlakescc.org/en/coordinating-committee-products-and-datasets/

8 plot.Arima2

plot.Arima2 Plot Arima2 object

Description

This function plots time series data loaded from an Arima2 object or plots inverse roots of the AR
or MA polynomials in a fitted ARIMA model on the complex unit circle.

Usage

S3 method for class 'Arima2'
plot(x, roots = TRUE, title = NULL, tick.lab = NULL, ...)

Arguments

x An Arima2 object. This parameter is an object created using the function arima2().

roots Would you instead prefer to plot the roots on a unit circle? Insert logical type
here.

title Title of plot

tick.lab Time vector of numeric or character/string type.

... Other parameters

Details

The output of this function is a ggplot object, so layers may be added to the output of this function
using ggplot2’s plus operator.

Value
Arima 2 plot, which is a ggplot2 object. Type of plot is indicated through roots parameter.

Examples

plot(arima(lh, order = c(1,0,1)))
plot(x = arima(lh, order = c(3,0,1)), roots = FALSE)

profile.Arima2 9

profile.Arima2 Profile for Arima2 object

Description

This function performs profile log-likelihood of an Arima2 function.

Usage

S3 method for class 'Arima2'
profile(
fitted,
d = 0,
npts = 100L,
lower = -1,
upper = 1,
which = 1L,
max_iters = 1,
...

)

Arguments

fitted An Arima2 object that has been fit to data.
d Integer number of differences. Should match the differences used to obtain the

fitted object.
npts Integer number of points to evaluate the profile.
lower Numeric lower bound for the profile search.
upper Numeric upper bound for the profile search.
which Integer indicating which parameter to perform the profile over. See Details sec-

tion for more information.
max_iters Maximum number of random restarts. See arima for more details.
... additional arguments needed for the profile function

Details

The parameter which specifies parameter in the following vector will be profiled over:

ϕ1, . . . , ϕp, θ1, . . . , θq,Φ1, . . . ,ΦP ,Θ1, . . . ,ΘQ, µ

where p, q are non-negative integers representing the number of AR and MA coefficients of fitted,
respectively, and ϕi are the AR coefficients, θi are the MA coefficients, Φi are the seasonal AR
coefficients, Θi are the seasonal MA coefficients and µ is the model intercept.

Value

data.frame object containing the results of the profile likelihood.

10 sample_ARMA_coef

Examples

example code
set.seed(123)
mod <- arima(miHuron_level$Average, order = c(1, 0, 1), max_iters = 100)
prof <- profile(mod, which = 2L, lower = -0.5, upper = 0.5)
plot(prof$ma1, prof$loglik)

sample_ARMA_coef Sample ARMA coef

Description

This function randomly samples the ARMA coefficients of a specified ARMA model. The coeffi-
cients are sampled so that the resulting ARMA model is both causal and invertible.

Usage

sample_ARMA_coef(
order = c(0L, 0L),
seasonal = list(order = c(0L, 0L), period = NA),
n = 1,
Mod_bounds = c(0, 1),
min_inv_root_dist = 0,
method = c("UnifRoots", "DL")

)

Arguments

order A specification of the non-seasonal part of the ARIMA model: this is different
than the order input of stats::arima(), because the degree of differencing is
not included. Thus order is a vector of length two of the form (p, q).

seasonal A specification of the seasonal part of the ARIMA model. Can be either a vector
of length 2, or a list with an order component; if a list, a period can be included,
but it does not affect the function output.

n An integer indicating how many sets of ARMA coefficients should be sampled.
Mod_bounds Bounds on the magnitude of the roots.
min_inv_root_dist

This parameter is included so as to help avoid ARMA models that contain pa-
rameter redundancy, if desired. Specifically, this parameter ensures that the min-
imum distance between any of the inverted roots in the AR and MA polynomi-
als is greater than min_inv_root_dist. Inverted roots that are near each other
leads to canceling or nearly canceling roots, effectively reducing the size of the
ARMA model.

method Method used to randomly sample parameter initializations. init_method =
"DL" will sample parameters using the Durbin-Levinson algorithm, described
by Monahan (1984). If init_method = "UnifRoots", then inverted roots of AR
and MA polynomials will be sampled uniformly from the complex unit circle.

sample_ARMA_coef 11

Details

For an ARMA model to be causal and invertible, the roots of the AR and MA polynomials must lie
outside the the complex unit circle. The AR and MA polynomials are defined as:

ϕ(z) = 1− ϕ1z − ϕ2z
2 − . . .− ϕpz

p

θ(z) = 1 + θ1z + θ2z
2 + . . .+ θqz

q

where z is a complex number, ϕ1, . . . , ϕp are the p AR coefficients of the ARMA model, and
θ1, . . . , θp are the q MA coefficients of the ARMA model.

This function implements two distinct sampling schemes. init_method = "DL" will sample pa-
rameters using the Durbin-Levinson algorithm, described by Monahan (1984). If init_method =
"UnifRoots", then inverted roots of AR and MA polynomials will be sampled uniformly from the
complex unit circle. In the later method, to ensure that the resulting polynomial coefficients are
real, we only sample half of the needed number of complex roots, and set the remaining half to be
the complex conjugate of the sampled points. In the case where the number of coefficients is odd,
the remaining root is sampled uniformly, satisfying the Mod_bounds parameter.

Value

a vector of randomly sampled ARMA coefficients.

References

Monahan, John F. (1984) A note on enforcing stationarity in autoregressive-moving average models.
Biometrika, 71(2), 403–404.

Examples

{
sample_ARMA_coef(

order = c(2, 1),
seasonal = list(order = c(1, 0), period = 2),
n = 100

)
}

Index

∗ datasets
miHuron_level, 7

aicTable, 2
arima, 2, 3, 6, 9
arima(), 2
ARMApolyroots, 6

KalmanLike, 4

list, 3

miHuron_level, 7

optim, 4

plot.Arima2, 8
profile.Arima2, 9

sample_ARMA_coef, 10
stats::arima, 5
stats::arima(), 3, 5, 6, 10
stats::coef, 5
stats::optim, 5
stats::vcov, 5

12

	aicTable
	arima
	ARMApolyroots
	miHuron_level
	plot.Arima2
	profile.Arima2
	sample_ARMA_coef
	Index

