| Type: | Package |
| Title: | Interactively Visualize Structural Equation Modeling Diagrams |
| Version: | 0.9.6 |
| Maintainer: | Seung Hyun Min <seung.min@mail.mcgill.ca> |
| Description: | It enables users to perform interactive and reproducible visualizations of path diagrams for structural equation modeling (SEM) and networks using interactive parameter visualization. Meta-data of figure outputs can be either reloaded, replayed or reproduced as objects with figure outputs or images. |
| License: | GPL-2 |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.2 |
| Depends: | R (≥ 4.1.0) |
| Imports: | blavaan, DiagrammeRsvg, dplyr, ggplot2, igraph, lavaan, methods, network, purrr, qgraph, RColorBrewer, rlang, Rtsne, semPlot, stringr, tidyr, tidySEM, umap, xml2 |
| Suggests: | colourpicker, DT, DiagrammeR, ellmer, grDevices, grid, memoise, shiny, shinyjs, smplot2, svglite |
| URL: | https://github.com/smin95/ggsem/ |
| BugReports: | https://github.com/smin95/ggsem/issues/ |
| Config/Needs/website: | rmarkdown |
| NeedsCompilation: | no |
| Packaged: | 2025-12-16 05:46:59 UTC; sammi |
| Author: | Seung Hyun Min [aut, cre] |
| Repository: | CRAN |
| Date/Publication: | 2025-12-16 06:11:09 UTC |
Add a SEM group to the visualization
Description
Add a SEM group to the visualization
Usage
add_group(
builder,
name,
model = NULL,
object = NULL,
level = NULL,
x = 0,
y = 0,
width = NULL,
height = NULL,
type = NULL
)
Arguments
builder |
A ggsem_builder object |
name |
Group name (required) |
model |
Model object (lavaan, blavaan, etc.) |
object |
Visualization object (qgraph, semPaths, etc.) |
level |
Group level of multi-group model or multi-group data (e.g., 'Pasteur') |
x |
X-coordinate for center position (default: 0) |
y |
Y-coordinate for center position (default: 0) |
width |
Width of visualization area (default: 25) |
height |
Height of visualization area (default: 25) |
type |
Type of analysis: 'sem' or 'network' (auto-detected) |
Value
Updated ggsem_builder object
Adjust Axis Range of a Plot of a ggplot2 Plot
Description
This function modifies the axis ranges of a ggplot object, with optional user-specified
ranges, additional buffers, and the ability to enforce a fixed aspect ratio. This is a modified
version of adjust_axis_space().
Usage
adjust_axis_range(
plot,
x_range = NULL,
y_range = NULL,
buffer_percent = 0,
fixed_aspect_ratio = TRUE
)
Arguments
plot |
A ggplot object. The plot whose axis ranges are to be adjusted. |
x_range |
A numeric vector of length 2 specifying the desired x-axis range.
If |
y_range |
A numeric vector of length 2 specifying the desired y-axis range.
If |
buffer_percent |
A numeric value indicating the percentage of additional space to add to each axis range as a buffer. Default is '0' (no buffer). |
fixed_aspect_ratio |
A logical value indicating whether to maintain a fixed
aspect ratio for the plot. If |
Details
- If 'x_range' or 'y_range' are provided, these values will override the current axis ranges. - The 'buffer_percent' parameter adds proportional space to the axis ranges, calculated as a percentage of the range's width or height. - When 'fixed_aspect_ratio' is 'TRUE', the function adjusts either the x-axis or y-axis to ensure the plot maintains a fixed aspect ratio.
Value
A modified ggplot object with adjusted axis ranges.
Examples
# CSV files from ggsem app
points_data <- data.frame(
x = 20, y = 20, shape = 'rectangle', color = '#D0C5ED', size = 50,
border_color = '#9646D4', border_width = 2, alpha = 1,
width_height_ratio = 1.6, orientation = 45, lavaan = FALSE,
network = FALSE, locked = FALSE, group = 1
)
lines_data <- data.frame(
x_start = 2, y_start = -2, x_end = 10, y_end = -2, ctrl_x = NA, ctrl_y = NA,
ctrl_x2 = NA, ctrl_y2 = NA, curvature_magnitude = NA, rotate_curvature = NA,
curvature_asymmetry = NA, type = 'Straight Line', color = '#000000',
end_color = NA, color_type = 'Single',
gradient_position = NA, width = 1.5, alpha = 1, arrow = FALSE,
arrow_type = NA, arrow_size = NA, two_way = FALSE, lavaan = FALSE,
network = FALSE, line_style = 'solid', locked = FALSE, group = 1
)
p <- csv_to_ggplot(graphics_data = list(points_data, lines_data),
zoom_level = 1.2, # Value from the ggsem app
horizontal_position = 0, # Value from the ggsem app
element_order = c('lines', 'points')) # order priority: lines < points
adjust_axis_range(p, x_range = c(-30,30), y_range= c(-30,30))
Adjust Surrounding White Space of a ggplot2 Plot
Description
This function allows users to remove or manage whitespace around graphical elements. It supports asymmetrical adjustments for each boundary (left, right, bottom, and top). Users can also maintain a fixed aspect ratio if required.
Usage
adjust_axis_space(
plot,
x_adjust_left_percent = 0,
x_adjust_right_percent = 0,
y_adjust_bottom_percent = 0,
y_adjust_top_percent = 0,
fixed_aspect_ratio = TRUE
)
Arguments
plot |
A ggplot2 object. The plot whose axis ranges need adjustment. |
x_adjust_left_percent |
Numeric. Percentage by which to expand the left boundary of the x-axis. Default is |
x_adjust_right_percent |
Numeric. Percentage by which to expand the right boundary of the x-axis. Default is |
y_adjust_bottom_percent |
Numeric. Percentage by which to expand the bottom boundary of the y-axis. Default is |
y_adjust_top_percent |
Numeric. Percentage by which to expand the top boundary of the y-axis. Default is |
fixed_aspect_ratio |
Logical. If |
Details
- **Percentage Adjustments:** The percentages provided for each axis boundary are calculated based on the current axis range. For example, x_adjust_left_percent = 10 expands the left boundary by 10
- **Fixed Aspect Ratio:** When fixed_aspect_ratio = TRUE, the function adjusts either the x-axis or y-axis to maintain a 1:1 aspect ratio. The larger adjustment determines the scaling for both axes.
Value
A ggplot2 object with adjusted axis ranges. The adjusted plot retains its original attributes and is compatible with additional ggplot2 layers and themes.
Examples
# CSV files from ggsem app
points_data <- data.frame(
x = 20, y = 20, shape = 'rectangle', color = '#D0C5ED', size = 50,
border_color = '#9646D4', border_width = 2, alpha = 1,
width_height_ratio = 1.6, orientation = 45, lavaan = FALSE,
network = FALSE, locked = FALSE, group = 1
)
lines_data <- data.frame(
x_start = 2, y_start = -2, x_end = 10, y_end = -2, ctrl_x = NA, ctrl_y = NA,
ctrl_x2 = NA, ctrl_y2 = NA, curvature_magnitude = NA, rotate_curvature = NA,
curvature_asymmetry = NA, type = 'Straight Line', color = '#000000',
end_color = NA, color_type = 'Single',
gradient_position = NA, width = 1.5, alpha = 1, arrow = FALSE,
arrow_type = NA, arrow_size = NA, two_way = FALSE, lavaan = FALSE,
network = FALSE, line_style = 'solid', locked = FALSE, group = 1
)
p <- csv_to_ggplot(graphics_data = list(points_data, lines_data),
zoom_level = 1.2, # Value from the ggsem app
horizontal_position = 0, # Value from the ggsem app
element_order = c('lines', 'points')) # order priority: lines < points
adjust_axis_space(p, x_adjust_left_percent = 10, x_adjust_right_percent = 10,
y_adjust_bottom_percent = 5, y_adjust_top_percent = 5)
Convert CSV Files (from ggsem Shiny App) to a ggplot Object
Description
This function converts the CSV files exported from the ggsem Shiny app into a customizable ggplot object. The resulting plot is compatible with ggplot2 functions, allowing users to modify it further (e.g., adding titles or annotations).
Usage
csv_to_ggplot(
graphics_data = NULL,
element_order = c("lines", "points", "loops", "annotations"),
zoom_level = 1,
horizontal_position = 0,
vertical_position = 0,
n = 100
)
Arguments
graphics_data |
A list of data frames containing point data, line data, annotation data, and loop data. It is exported from the ggsem Shiny app. Default is |
element_order |
A character vector specifying the order in which graphical elements are added to the plot.
For example: |
zoom_level |
A numeric value controlling the zoom level of the plot. A value >1 zooms in; <1 zooms out. Default is |
horizontal_position |
A numeric value to shift the plot horizontally. Default is |
vertical_position |
A numeric value to shift the plot vertically. Default is |
n |
Number of points used for interpolation in gradient or curved lines. Default is |
Details
- The function uses 'coord_fixed' to ensure square plotting space and uniform scaling. - The 'element_order' parameter determines the layering of graphical elements, with later elements appearing on top. - The 'axis_ranges' attribute is attached to the plot for additional programmatic access.
Value
A ggplot object with an axis_ranges attribute specifying the x and y axis ranges after adjustments.
Examples
# CSV files from ggsem app
points_data <- data.frame(
x = 20, y = 20, shape = 'rectangle', color = '#D0C5ED', size = 50,
border_color = '#9646D4', border_width = 2, alpha = 1,
width_height_ratio = 1.6, orientation = 45, lavaan = FALSE,
network = FALSE, locked = FALSE, group = 1
)
lines_data <- data.frame(
x_start = 2, y_start = -2, x_end = 10, y_end = -2, ctrl_x = NA, ctrl_y = NA,
ctrl_x2 = NA, ctrl_y2 = NA, curvature_magnitude = NA, rotate_curvature = NA,
curvature_asymmetry = NA, type = 'Straight Line', color = '#000000',
end_color = NA, color_type = 'Single',
gradient_position = NA, width = 1.5, alpha = 1, arrow = FALSE,
arrow_type = NA, arrow_size = NA, two_way = FALSE, lavaan = FALSE,
network = FALSE, line_style = 'solid', locked = FALSE, group = 1
)
csv_to_ggplot(graphics_data = list(points_data, lines_data),
zoom_level = 1.2, # Value from the ggsem app
horizontal_position = 0, # Value from the ggsem app
element_order = c('lines', 'points')) # order priority: lines < points
Draw Text Annotations to a ggplot Object
Description
This function overlays text annotations onto any ggplot object. It is particularly useful for adding annotations from CSV files generated by the ggsem Shiny app but can also be used with custom annotation data.
Usage
draw_annotations(annotations_data, zoom_level = 1)
Arguments
annotations_data |
A data frame containing annotation information. Typically, this comes from a CSV file generated by the ggsem Shiny app. The required columns include:
|
zoom_level |
Numeric. Adjusts the size of annotations based on the zoom level. Default is |
Value
ggplot2 annotation layers
Examples
library(ggplot2)
annotations_data <- data.frame(
text = 'x1', x = 9.5, y = 21, font = 'sans',
size = 16, color = '#FFFFFF', fill = NA, angle = 0,
alpha = 1, fontface = 'plain', math_expression = FALSE,
lavaan = FALSE, network = FALSE, locked = FALSE,
group_label = FALSE, loop_label = FALSE, group = 1
)
p <- ggplot()
p + draw_annotations(annotations_data, zoom_level = 1.2)
Draw Lines on a ggplot Object from Line Data
Description
This function overlays lines or arrows to a ggplot object based on line data. It supports straight lines, curved lines, gradient color transitions, and one-way or two-way arrows. The data can come from a CSV file generated by the ggsem Shiny app or custom input.
Usage
draw_lines(lines_data, zoom_level = 1, n = 100)
Arguments
lines_data |
A data frame containing line information. The expected columns include:
|
zoom_level |
Numeric. Adjusts the size of line widths and arrowheads relative to the plot. Default is |
n |
Integer. Number of points for interpolation in gradient or curved lines. Default is |
Value
ggplot2 line layers
Examples
library(ggplot2)
lines_df <- data.frame(
x_start = 11, y_start = -2.3, x_end = 21, y_end = 3.5,
ctrl_x = NA, ctrl_y = NA, ctrl_x2 = NA, ctrl_y2 = NA,
curvature_magnitude = NA, rotate_curvature = NA,
curvature_asymmetry = NA, type = 'Straight Line',
color = '#000000', end_color = NA, color_type = 'Single',
gradient_position = NA, width = 1, alpha = 1, arrow = TRUE,
arrow_type = 'closed', arrow_size = 0.1, two_way = FALSE,
lavaan = FALSE, network = FALSE, line_style = 'solid',
locked = FALSE, group = 1
)
p <- ggplot()
p + draw_lines(lines_data = lines_df, zoom_level = 1.2, n = 200)
Draw Self-loop Arrows on a ggplot Object
Description
This function overlays self-loop arrows to a ggplot object based on data describing their positions, sizes, orientations, and styles. Self-loop arrows can be drawn in one direction or bidirectionally with customizable parameters such as color, width, and arrow type. The data can come from a CSV file generated by the ggsem Shiny app or custom input.
Usage
draw_loops(loops_data, zoom_level = 1)
Arguments
loops_data |
A data frame containing information about the self-loop arrows. The expected columns include:
|
zoom_level |
Numeric. Adjusts the size of line widths and arrowheads relative to the plot. Default is |
Value
ggplot2 loop layers
Examples
library(ggplot2)
loops_data <- data.frame(
x_center = -5, y_center = 5, radius = 2, color = '#000000',
width = 1, alpha = 1, arrow_type = 'closed', arrow_size = 0.1,
gap_size = 0.2, loop_width = 5, loop_height = 5, orientation = 0,
lavaan = TRUE, two_way = FALSE, locked = FALSE, group = 1
)
p <- ggplot()
p + draw_loops(loops_data, zoom_level = 1.2)
Draw Points on a ggplot Object
Description
This function overlays points to a ggplot object using data from a CSV file generated by the ggsem Shiny app or any custom dataset. Points can be styled with various shapes, colors, sizes, and orientations.
Usage
draw_points(points_data, zoom_level = 1)
Arguments
points_data |
A data frame containing information about the points to be drawn. The expected columns include:
|
zoom_level |
Numeric. Adjusts the size of the points relative to the plot. Default is |
Value
ggplot2 point layers
Examples
library(ggplot2)
points_data <- data.frame(
x = 0, y = 0, shape = 'square', color = '#1262B3', size = 12,
border_color = '#FFFFFF', border_width = 1, alpha = 1,
width_height_ratio = 1.6, orientation = 0,
lavaan = FALSE, network = FALSE, locked = FALSE,
group = 1
)
p <- ggplot()
p + draw_points(points_data, zoom_level = 1.2) +
scale_x_continuous(limits = c(0,50)) +
scale_y_continuous(limits = c(0,50))
Get axis range of a ggplot object
Description
A function to calculate the range of x- and y- axes.
Usage
get_axis_range(plot)
Arguments
plot |
ggplot output from csv_to_ggplot() |
Value
A list object that has two elements, each of which has two vector values. The first element stores the minimum and maximum values of the plot's x-axis range, while the second element stores the minimum and maximum values of the plot's y-axis range.
Examples
library(ggplot2)
ggplot(mtcars) + geom_point(aes(mpg, disp)) -> p1
get_axis_range(p1)
Launch ggsem Shiny Application
Description
Main function to launch the ggsem Shiny application for interactive network and structural equation modeling visualization. The app can be started with pre-existing objects or used to create visualizations from scratch.
Usage
ggsem(
object = NULL,
model_obj = NULL,
model = NULL,
type = "sem",
session = "sem",
center_x = NULL,
center_y = NULL,
width = NULL,
height = NULL,
random_seed = NULL,
group_id = NULL,
group_level = NULL
)
Arguments
object |
Optional visualization object. Supported types include: - For SEM: 'lavaan', 'qgraph' (from semPaths), 'sem_graph' (tidySEM), 'MxRAMModel' (OpenMx), 'mplusObject', 'grViz' (diagrammeR) - For networks: 'igraph', 'network', 'qgraph' |
model_obj |
Optional model object to accompany visualization objects. Required for some object types like 'sem_graph' (tidySEM) for SEM visualizations. |
model |
Same with model_obj |
type |
Type of analysis: 'sem' for structural equation modeling or 'network' for network analysis. Default is 'sem'. |
session |
Initial session type (element type) when app launches. Either 'point', 'line', 'annotation', 'loop', 'sem' or 'network'. Default is 'sem'. |
center_x |
X-coordinate for the center of the visualization. If NULL, defaults to 0. |
center_y |
Y-coordinate for the center of the visualization. If NULL, defaults to 0. |
width |
Width of the visualization area. If NULL, defaults to 25. |
height |
Height of the visualization area. If NULL, defaults to 25. |
random_seed |
Random seed for reproducibility of layouts. If NULL, uses current time in milliseconds. |
group_id |
Identifier for grouping in multi-group models |
group_level |
Level for grouping in multi-group models as in original data file or model object |
Details
The ggsem Shiny application provides an interactive interface for: - Visualizing and customizing SEM path diagrams - Creating and modifying network visualizations - Adjusting node/edge aesthetics, layouts, and annotations - Exporting high-quality publication-ready graphics
When starting with an object, the app will pre-load the visualization and allow further customization. When starting without an object, users can upload data or use built-in examples.
Value
Launches a Shiny application. Does not return a value.
Supported Object Types
SEM Objects:
-
lavaan: Fitted lavaan models -
qgraph: semPaths objects from lavaan models -
sem_graph: tidySEM objects -
MxRAMModel: OpenMx models -
mplusObject: Mplus models -
grViz: diagrammeR objects from lavaanPlot
Network Objects:
-
igraph: igraph network objects -
network: network package objects -
qgraph: qgraph network objects
Examples
## Not run:
# Launch app without pre-existing objects
ggsem()
# Launch app with a lavaan model
library(lavaan)
model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(model, data = HolzingerSwineford1939)
ggsem(object = fit)
# Launch app with an igraph network
library(igraph)
g <- make_ring(10)
ggsem(object = g, type = "network", session = "network")
# Launch app with custom dimensions
ggsem(object = g, type = "network", center_x = 10, center_y = 10, width = 30, height = 30)
# Launch app with no input
ggsem()
## End(Not run)
Create multi-group SEM visualizations
Description
Build and launch multi-group SEM visualizations with an intuitive API. Ideal for comparing multiple groups from the same or different models.
Usage
ggsem_builder(type = "sem")
Arguments
type |
Default type for all groups: 'sem' or 'network' (default: 'sem') |
Value
A ggsem_builder object
Launch ggsem Shiny application
Description
Launches the ggsem Shiny application for interactive SEM and network visualization.
Usage
ggsem_launch(x = NULL, ...)
Arguments
x |
A ggsem_builder object, model object, visualization object, or NULL |
... |
Additional arguments passed to Shiny app |
Value
Runs Shiny application
Launch ggsem Shiny application from objects
Description
Launch ggsem Shiny application from objects
Usage
## Default S3 method:
ggsem_launch(x, center_x = NULL, center_y = NULL, ...)
Arguments
x |
Any compatible R object (lavaan, igraph, qgraph, etc.) |
center_x |
X-coordinate for center position |
center_y |
Y-coordinate for center position |
... |
Additional arguments passed to Shiny app |
Value
Runs Shiny application
Launch ggsem Shiny application from builder
Description
Launch ggsem Shiny application from builder
Usage
## S3 method for class 'ggsem_builder'
ggsem_launch(x, session = NULL, ...)
Arguments
x |
A ggsem_builder object |
session |
Session type ('sem' or 'network') |
... |
Additional arguments passed to Shiny app |
Value
Runs Shiny application
Run ggsem silently (without launching the app) and get the visualization outputs
Description
This function processes a saved ggsem workflow metadata file and extracts all visualization data (points, lines, annotations, loops) that would be displayed in the Shiny app. It reproduces both SEM and network visualizations from the saved session state.
Usage
ggsem_silent(metadata)
Arguments
metadata |
A list containing ggsem workflow metadata, typically loaded from an RDS file saved by the ggsem Shiny app using the "Export Workflow" functionality. The metadata should contain SEM groups, network groups, visual elements, and group labels. |
Value
A list of four data frames:
-
points- Data frame containing point coordinates and properties -
lines- Data frame containing line coordinates and properties -
annotations- Data frame containing text annotations -
loops- Data frame containing loop coordinates and properties
Examples
## Not run:
# Load a saved ggsem workflow
workflow_metadata <- readRDS("ggsem_workflow_20240101_120000.rds")
# Extract visualization data
viz_data <- ggsem_silent(workflow_metadata)
# Access the different components
points <- viz_data$points
lines <- viz_data$lines
annotations <- viz_data$annotations
loops <- viz_data$loops
## End(Not run)
Launch method for ggsem_builder objects
Description
Convenience method for builder pattern: builder |> launch()
Usage
launch(builder, ...)
Arguments
builder |
A ggsem_builder object |
... |
Additional arguments passed to Shiny app |
Value
Runs Shiny application
Convert ggsem workflow metadata directly to a ggplot object
Description
This function is a convenient wrapper that takes ggsem workflow metadata, extracts the visualization data silently, and converts it to a ggplot object in one step.
Usage
metadata_to_ggplot(
metadata,
element_order = c("lines", "points", "loops", "annotations"),
zoom_level = 1,
horizontal_position = 0,
vertical_position = 0,
n = 100
)
Arguments
metadata |
A list containing ggsem workflow metadata, typically loaded from an RDS file saved by the ggsem Shiny app using the "Export Workflow" functionality. |
element_order |
A character vector specifying the order in which graphical elements are added to the plot.
For example: |
zoom_level |
A numeric value controlling the zoom level of the plot. A value >1 zooms in; <1 zooms out. Default is |
horizontal_position |
A numeric value to shift the plot horizontally. Default is |
vertical_position |
A numeric value to shift the plot vertically. Default is |
n |
Number of points used for interpolation in gradient or curved lines. Default is |
Details
This function combines the functionality of ggsem_silent and csv_to_ggplot
into a single convenient call. It's useful when you want to go directly from saved workflow
metadata to a ggplot object without intermediate steps.
Value
A ggplot object with an axis_ranges attribute specifying the x and y axis ranges after adjustments.
Examples
## Not run:
# Load a saved ggsem workflow
workflow_metadata <- readRDS("ggsem_workflow_metadata.rds")
# Convert directly to ggplot
p <- metadata_to_ggplot(
metadata = workflow_metadata
)
# Customize the plot further
p + ggtitle("My SEM Visualization")
## End(Not run)
Reproduce a network visualization from metadata
Description
This function recreates a network visualization using stored metadata from a Shiny app session. It can handle various network object types including igraph, qgraph, ggnet2 objects, and adjacency matrices.
Usage
reproduce_network(
metadata = NULL,
group_id = NULL,
object = NULL,
zoom_level = 1.2
)
Arguments
metadata |
Either a metadata object or a file path to an RDS file containing metadata captured from the Shiny app. If NULL, the function will stop with an error. |
group_id |
The identifier for the specific network group to reproduce. This corresponds to the group ID used in the original Shiny app. |
object |
Optional network object to use instead of the one stored in metadata. Useful for testing with different network objects. |
zoom_level |
Zoom factor for the visualization. Default is 1.2. |
Value
A ggplot object containing the reproduced network visualization.
Examples
## Not run:
# Reproduce network from saved metadata
network_plot <- reproduce_network(
metadata = "path/to/metadata.rds",
group_id = "network1"
)
# Reproduce with custom data
network_plot <- reproduce_network(
metadata = metadata_object,
data = "path/to/edges.csv",
group_id = "network1"
)
## End(Not run)
Reproduce a SEM (Structural Equation Modeling) visualization from metadata
Description
This function recreates a SEM path diagram using stored metadata from a Shiny app session. It supports various SEM object types including lavaan, semPlot, qgraph, and diagrammeR objects.
Usage
reproduce_sem(
metadata = NULL,
lavaan_syntax = NULL,
group_id = NULL,
object = NULL,
zoom_level = 1.2
)
Arguments
metadata |
Either a metadata object or a file path to an RDS file containing metadata captured from the Shiny app. If NULL, the function will stop with an error. |
lavaan_syntax |
Optional lavaan syntax string. If NULL, uses the syntax stored in the metadata. |
group_id |
The identifier for the specific SEM group to reproduce. This corresponds to the group ID used in the original Shiny app. |
object |
Optional SEM object to use instead of the one stored in metadata. Useful for testing with different SEM objects. |
zoom_level |
Zoom factor for the visualization. Default is 1.2. |
Value
A ggplot object containing the reproduced SEM path diagram.
Examples
## Not run:
# Reproduce SEM from saved metadata
sem_plot <- reproduce_sem(
metadata = "path/to/metadata.rds",
group_id = "sem1"
)
# Reproduce with custom lavaan syntax
sem_plot <- reproduce_sem(
metadata = metadata_object,
lavaan_syntax = "y ~ x1 + x2",
group_id = "sem1"
)
## End(Not run)
Save a ggplot Object with Adjusted Dimensions
Description
This function saves a ggplot object (created from 'csv_to_ggplot()' function) to a file with dimensions automatically determined based on the x-axis and y-axis ranges of the plot. The size of the output can be further controlled using addtional arguments.
Usage
save_figure(
filename,
plot,
units = "in",
dpi = 300,
aspect_ratio = NULL,
scale_factor = 0.122,
zoom_level = 1,
...
)
Arguments
filename |
A string. The name of the output file (e.g., "plot.png"). |
plot |
A ggplot object to save. |
units |
A string. Units for width and height. Default is |
dpi |
Numeric. Resolution of the output file in dots per inch. Default is 300. |
aspect_ratio |
Numeric or |
scale_factor |
Numeric. A scaling factor to control the overall size of the saved plot. Default is |
zoom_level |
Numeric. A zoom factor, value > 1 means zoom out. Default is |
... |
Additional arguments passed to |
Value
Saves the ggplot object to the specified file and does not return a value.
Examples
## Not run:
# CSV files from ggsem app
points_data <- data.frame(
x = 20, y = 20, shape = 'rectangle', color = '#D0C5ED', size = 50,
border_color = '#9646D4', border_width = 2, alpha = 1,
width_height_ratio = 1.6, orientation = 45, lavaan = FALSE,
network = FALSE, locked = FALSE, group = 1
)
lines_data <- data.frame(
x_start = 2, y_start = -2, x_end = 10, y_end = -2, ctrl_x = NA, ctrl_y = NA,
ctrl_x2 = NA, ctrl_y2 = NA, curvature_magnitude = NA, rotate_curvature = NA,
curvature_asymmetry = NA, type = 'Straight Line', color = '#000000',
end_color = NA, color_type = 'Single',
gradient_position = NA, width = 1.5, alpha = 1, arrow = FALSE,
arrow_type = NA, arrow_size = NA, two_way = FALSE, lavaan = FALSE,
network = FALSE, line_style = 'solid', locked = FALSE, group = 1
)
p1 <- csv_to_ggplot(graphics_data = list(points_data, lines_data),
zoom_level = 1.2, # Value from the ggsem app
horizontal_position = 0, # Value from the ggsem app
element_order = c('lines', 'points')) # order priority: lines < points
# Save with default scaling
save_figure("p1.png", p1)
## End(Not run)
Set default type for the builder
Description
Change the default type for subsequent add_group() calls
Usage
set_type(builder, type = "sem")
Arguments
builder |
A ggsem_builder object |
type |
Default type: 'sem' or 'network' |
Value
Updated ggsem_builder object