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1 Introduction

The Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) model of Bollerslev (1986)
and the numerous extensions which have followed since, is a framework for modeling the dynamics of the
conditional variance. It has proved particularly popular, particularly among financial market practitioners,
but also in other areas were the arrival of unexpected new information may lead to non-instantaneous decay
(persistence) and/or asymmetric reaction to good and bad news (news impact).

Many programming languages have one or more implementations of GARCH, with R having no less than
3, including the garch function from the tseries package, fGarch and rugarch. A select R package review
is provided in Hill and McCullough (2019), and a cross language package review on asymmetric GARCH
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in Charles and Darné (2019). The suggestions and constructive feedback in these papers were taken into
account when developing this new package, as were many of the user comments over the last 10+ years.

The tsgarch package is a partial re-implementation of rugarch, by the same author, with key differences
summarized below:

• does not (yet) implement all GARCH models in rugarch. FIGARCH, Multiplicative Component
GARCH and Realized GARCH are not currently implemented.

• does not implement joint ARFIMA-GARCH estimation. The conditional mean equation only allows for
a constant. With so many options for modelling the conditional mean, many of which are available in the
tsmodels framework, it was decided to keep this package simpler and avoid the joint estimation of both
conditional mean and variance dynamics. While the 2 step estimation approach, whereby the residuals of
the conditional mean are passed to the variance dynamics estimation, may be less efficient for small sized
datasets, it is expected to be more flexible in what can be achieved. Additionally, the ARCH-in-mean
model is no longer available, as it was found to have very limited value within the tsmodels framework
or in general, this author’s experience. A separate tsarma package for ARMA(p,q)-X models is however
available.

• makes use of automatic differentiation (autodiff) during estimation, via the TMB package. This is in
line with similar approaches in other models written in the tsmodels framework. Using autodiff allows
for more confident estimation and more accurate standard errors. Autodiff is also used for the more
complex inequality constraints of some models which involve evaluation of an expectation, in order to
generate more accurate Jacobians of these inequalities for use during optimization.

• adopts a custom approach in optimization using parameter scaling which avoids problems with conver-
gence and numerical stability.

• fully implements and correctly documents a number of sandwich estimators making use of the sandwich
package framework (with methods for bread and estfun and meat/meat_HAC functions).

• makes use of S3 methods and classes, abandoning the S4 approach of rugarch. Additionally, while
making use of standard methods from the stats package, some of the methods are based on those
exported from tsmethods, consistent with other packages in the tsmodels framework. The Appendix
provides a table with a hierarchical overview of the main functions and methods currently implemented
in the package.

• provides more accurate and informative output, including standard errors, confidence intervals, and a
more detailed summary output including a fancy flextable output for the summary method.

• provides numerous fixes and enhancements to the original rugarch code, including the unconditional
variance of the exponential GARCH(1,1) model, and better startup conditions for the initialization of
the recursion.

• provides more extensive documentation and high coverage of unit tests, with a focus on the accuracy of
the estimation and the correctness of the output as well as catching many corner cases.

This vignette provides a mathematical summary of each type of GARCH model used, general assumptions
regarding initialization and other estimation details as well as the forecast equation. Separate vignettes are
available with code demonstrations.

2 GARCH Estimation

The density function, based on the distributions available in the tsdistributions package, is expressed in
terms of the location, scale, skew and shape parameters {µt, σt, ζ, ν}, normalized to give zero mean and unit
variance:

zt =
yt − µt

σt
(1)
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where µt = E (yt|xt) and σ2
t = E

(

(yt − µt)
2|xt

)

, with xt the information set available at the period
immediately before time t and may include both external regressors and lagged values of y. Assuming that
the distribution of zt is independent of the conditioning information set1, then:

g (zt|ζ, ν) =
d

dz
P (zt < z|ζ, ν) (2)

which is related to the distribution of yt by through the scale term:

f (yt|µt, σt, ζ, ν) =
1

σt
g (zt|ζ, ν) (3)

The parameter set θ, which includes the conditional mean, conditional variance and distributional skew and
shape parameters is estimated by minimizing the negative of the log-likelihood:

θML = arg min
θ

T
∑

t=1

−log

(

1

σt
g (zt|ζ, ν)

)

(4)

subject to upper and lower parameters bound constraints as well as the persistence constraint (P < 1) and
other non-negativity constraints. Estimation is performed using the nloptr solver with analytic Gradient and
Jacobian of the constraints2 provided through autodiff in TMB.

2.1 Recursion Initialization (σ
δ

0)

When estimating a GARCH model, we need to initialize the variance to some value in order to start the
recursion. In the tsgarch package we set all values of σ2

t ,∀t ≤ 0 to the sample variance or some other
estimator which the user can choose from. Three options are available:

1. unconditional:
(

1
T

∑T
j=1 ε

2
j

)(δ/2)

2. sample:
(

1
S

∑S
j=1 ε

2
j

)(δ/2)

, where S is the length of the sample to use.

3. backcasting:
(

λT σ̂2 + (1 − λ)
∑T −1

j=0 λ
jε21 + j

)δ/2

, λ ∈ {0, 1}

where : σ̂2 = 1
T −1

∑T
j=1 ε

2
j

For the backasting method, setting λ = 1 we obtain the sample variance, else values of λ less than one and
greater than zero yields the exponential smoothing backcast estimator. The exponent δ is for the power
ARCH type models, otherwise it is set to 2 (variance). One popular commercial econometric software package
defaults to backasting using a value of 0.7 for λ.

In addition to the variance, we also need to initialize the value of the ARCH component for t ≤ j, by taking
the sample average of the equation or part of the equation. Details of this initialization is provided for each
model. Note that for all models, the initialization values of the ARCH(q) components will follow the user
choice for the variance initialization.

2.2 Model Persistence, Long Run Variance and Half-Life

The persistence (P ) of a GARCH model is a measure which quantifies the degree of volatility clustering and
rate of decay. It also forms a bounding constraint (< 1) on the model dynamics in order to ensure stationarity.
Another way to think about persistence is by looking at the unconditional variance of a GARCH model which
is defined as

1In the case when this assumption is relaxed, this will give rise to a non constant conditional distribution. See Hansen (1994).
2For some of the problems, the persistence has an easy closed form solution and therefore the Jacobian is hardcoded instead

of making use of autodiff.
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σ̂2 =
ω +

∑m
k=1 ξkχ̄k

1 − P
(5)

where χ̄k is the sample mean of any external regressors.

Equation (5) illustrates that positivity of the unconditional variance requires P <= 1, whilst existence of
this value requires P < 1, which is not the case for the integrated GARCH model where P = 1 by design.
The form that P takes will depend on the type of model, with the formulas provided in Section 2.8. Closely
related to the persistence is the half-life measure which is defined as the number of periods it takes for a
shock to revert half way back to the long run variance, and defined as −loge(2)/loge(P ).

A special note is warranted for the half-life of the Component GARCH (cgarch) model which is composed
of a permanent and transitory component, each of which have a persistence (see (59)). The permanent
component half-life, based on the estimate of ρ, measures the time taken for the long-run influence of a shock
in volatility to revert by half towards it’s long run unconditional value, whereas the transitory component
half-life accounts for the time taken for a shock’s influence to revert to its long-run rate.

2.3 Variance Targeting (ω̄)

Variance targeting sets the value of the GARCH intercept (ω) to it’s long run estimate as :

ω̄ = σ̂2 (1 − P ) −
m
∑

k=1

ξkχ̄k (6)

where σ̂2 is the unconditional variance of ε2, consistently estimated by its sample counterpart, P is the model
persistence and χ̄k the mean of the external variance regressors (if present). A review of variance targeting
can be found in Francq et al. (2011). In this author’s experience, more than 90% of model estimation problems
come from trying to estimate ω as a result of parameter scaling issues. In tsgarch, despite attempts to apply
some scaling rules during optimization, failure to converge will sometimes happen, in which case the model
will be automatically re-estimated with variance targeting (the output will indicate when this has happened).

Unlike initialization estimators for σ2
0 and ε2

0, the value of σ̂2 and v̂j is based on the full sample.

2.4 External Regressors (χ)

Inclusion of additive external regressors has always been a little tricky when it comes to variance modelling
due to the non-negativity constraint. This is an issue in all GARCH flavors with the exception of the
exponential model. One way to deal with this is to constrain coefficients and regressors to be strictly positive
which is not ideal. Another option, which is now offered in tsgarch is to have multiplicative regressors where
the intercept is now calculated as follows:

ωt = exp

(

ω +

m
∑

k=1

ξkχk,t

)

(7)

which does not require any bound constraints on either the constant ω or the regressors.

2.5 News Impact Curve (NIC)

Engle and Ng (1993) defined the news impact curve as a way to analyze the effect of news on the conditional
variance by keeping constant the information dated t− 2 and earlier. Therefore, the long run variance of the
model is used in place of σt−1 and a range of values for εt are chosen to show how news of different sign and
size impact the current conditional variance. A most interesting example of this found in the Family GARCH
model of Hentschel (1995) which accommodates both shifts and rotations in the news impact curve, with
the shift factor being the the main source of asymmetry for small shocks, and rotation driving larger shocks.
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A more detailed exposition, and compact representation of the news impact can be found in Caporin and
Costola (2019) who define asymmetry of a GARCH model, for all shocks θ, as the case where:

NIC (θ) ̸= NIC (−θ) (8)

2.6 Standard Errors

The tsgarch package makes use of the methods available in the sandwich package to deliver a number of
different estimators for the parameter covariance matrix (S).

Define the objective function (Ψ) as the log-likelihood of the GARCH model with respect to the data and
parameters:

Ψ (y, x, θ) =

T
∑

t=1

log

(

1

σt
g (zt|ζ, ν)

)

(9)

where 1
σt
g (zt|ζ, ν) is defined in Section 2. The estimating (or score) function of the objective function is then:

ψ (y, x, θ) =
∂Ψ (y, x, θ)

∂θ
(10)

Inference about the parameter set θ relies on a central limit theorem (CLT) with
√
n consistency:

√
n
(

θ̂ − θ
)

d→ N (0, S(θ)) (11)

where
d→ indicates convergence in distribution. The sandwich package defines the sandwich estimator S (θ)

as:

S (θ) = B (θ)M (θ)B (θ) (12)

where the meat (M) of the sandwich is the variance of the estimating function:

M (θ) = VAR [ψ (y, x, θ)] (13)

and the bread (B) is the inverse of the expectation of its first derivative (ψ
′

):

B (θ) =
(

E
[

−ψ′

(y, x, θ)
])−1

(14)

In tsgarch, the following 4 estimators for the covariance matrix are defined:

2.6.1 Direct (H)

S (θ) = B (θ) = −H−1 (15)

This makes use of the analytic hessian (H) at the optimal solution.
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2.6.2 Outer product of the gradient (OP)

S (θ) = M (θ)

=
1

T

T
∑

t=1

ψ
(

yt, xt, θ̂
)

ψ
(

yt, xt, θ̂
)

′ (16)

The estimating function is essentially the Jacobian of the likelihood at each time step with respect to the
parameters. Currently, this is based on the jacobian function from numDeriv, but will be replaced in a
future version by the analytic solution from TMB once I figure out how to do this.

2.6.3 Quasi-Maximum Likelihood (QML)

S (θ) = B (θ)M (θ)B (θ)

= H−1

(

ψ
(

yt, xt, θ̂
)

ψ
(

yt, xt, θ̂
)

′
)

H−1
(17)

2.6.4 HAC (NW)

In the presence of residual autocorrelation, the HAC estimator is based on the weighted empirical autocorre-
lations of the empirical estimating functions:

MHAC =
1

T

T
∑

i,j=1

w|i−j|ψ
(

yt, xt, θ̂
)

ψ
(

yt, xt, θ̂
)

′

S (θ) = B (θ)MHAC (θ)B (θ)

(18)

where the weights w can either be fixed or estimated using an appropriate choice of strategies. In the tsgarch
package, the bandwidth of Newey and West (1994) is used to automatically calculate the lag and then the
weights, based on the bwNeweyWest function from the sandwich package.

2.7 Parameter Scaling

The estimation strategy involves 2 passes through the optimizer. During the first pass, the parameters are
first estimated using no-scaling. In the second pass, the problem is reformulated based on re-scaling the n

parameters and their bounds by the vector s =
√

{s−1
1,1, s

−1
2,2, . . . , s

−1
n,n}, where si,i are the diagonals of the

hessian at the previous solution.

The rescaled parameters and their bounds are passed to the optimizer, whilst the underlying C++ TMB code
scales them back in order to perform the likelihood calculations and correctly adjust the analytic derivatives
in the presence of this scaling vector.

The reason for performing this extra step, is to avoid some bad solutions as a result of large differences in
scaling (particularly with respect to the constant ω), and to avoid issues with the derivatives. The optimal
hessian and scores (the estimating function) in the output object are based on the scaled versions from
the second pass which are then re-scaled back. This approach was found to offer substantial stability at a
relatively low cost. Some justification for this method can be found in Yang and Lee (2010) and Rao (2019).

2.8 GARCH Flavors

The tsgarch package implements a number of different flavors of GARCH, including the option of 10 different
distributions. The next subsections provide details of each model’s formulation. For each model, the dynamics
of the conditional mean take the following form:

6
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µt = µ

yt = µt + εt, εt ∼ D (0, σt, ζ, ν, λ)
(19)

where D is one of the available distributions from tsdistributions, ζ the skew parameter, ν the shape
parameter and λ an additional shape parameter used in the Generalized Hyperbolic distribution. These
additional distributional parameters may be present in some combination or not at all depending on the
distribution. It is also possible to set µ to zero and pass a series of pre-filtered residual values from some
other model as discussed in Section 1.

Note that the parameter symbols for the model equations presented in the following subsections will be exactly
the same as those output by the package, with the summary method on estimated objects having the option
to replace the names of parameters with symbols when transforming to a flextable object (as_flextable

method on summary object).

2.8.1 Vanilla GARCH (garch)

The vanilla GARCH model of Bollerslev (1986) extended the ARCH model of Engle (1982) to include a
moving average term making it more closely aligned with the literature on ARMA processes, and allowing for
a wider range of behavior and more persistent volatility.

2.8.1.1 Equation

ωt = ω +

m
∑

k=1

ξkχk,t

σ2
t = ωt +

q
∑

j=1

αjε
2
t−j +

p
∑

j=1

βjσ
2
t−j

(20)

In the presence of variance regressors, the choice to use multiplicative type intercept means that:

ωt = exp

(

ω +

m
∑

k=1

ξkχk,t

)

(21)

in which case the bounds on ω and ξk are mostly free and we don’t have to worry about the positivity of the
variance.

2.8.1.2 Initialization

σ2
t−j =

1

T

T
∑

t=1

ε2
t , (t− j) ≤ 0

ε2
t−j =

1

T

T
∑

t=1

ε2
t , (t− j) ≤ 0

(22)

where the first equation is used to initialize the GARCH recursion and the second one (identical to the first)
is used for the ARCH recursion initialization.

This is the default choice, but other choices such as less than full sample and backcasting are also available
and described in Section 2.1.

2.8.1.3 Persistence

P =

q
∑

j=1

αj +

p
∑

j=1

βj (23)
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2.8.1.4 News Impact
σ2

t = ω + αε2
t + βσ̄2 (24)

where σ̄2 =
ω+
∑

n

k=1
ξkχ̄k

1−P
3 and represents the long run unconditional variance in the (optional) presence of m

variance regressors χ with coefficients ξ (see Section 2.3).

2.8.1.5 Model Constraints

• 1 > αj > 0
• 1 > βj > 0
• ω > 0
• P < 1

For higher order models, it is suggested that the constraints on αj be relaxed to allow for non positive values
This can be achieved by changing the lower value in the parmatrix slot of the specification.

2.8.1.6 Forecast

σ2
t+h =

(

ω +
m
∑

k=1

ξkχk,t+h

)

+

q
∑

j=1

αjσ
2
t+h−j +

p
∑

j=1

βjσ
2
t+h−j , (h− j) > 0 (25)

2.8.2 Integrated GARCH (igarch)

The integrated GARCH model of Engle and Bollerslev (1986) assumes that the persistence P = 1, hence
shocks are permanent and the unconditional variance infinite. The motivation behind this model was to
capture the long memory behavior observed in some financial time series.4 However, Nelson (1990) showed
that the IGARCH process with no drift (ω = 0) would converge to zero with probability one. In the presence
of a drift term (ω > 0) the process is neither covariance stationary nor does it have well-defined unconditional
variance, though it still remains strictly stationary and ergodic. For truly long memory processes, other
GARCH models should be considered such as the Fractionally Integrated GARCH (FIGARCH) or Hyperbolic
GARCH (HYGARCH) which may be included at a later time.

2.8.2.1 Equation

ωt = ω +

m
∑

k=1

ξkχk,t

σ2
t = ωt +

q
∑

j=1

αjε
2
t−j +

p
∑

j=1

βjσ
2
t−j

(26)

2.8.2.2 Persistence The persistence in the igarch model is set to 1 and forms a binding constraint on
the parameters.

P =

q
∑

j=1

αj +

p
∑

j=1

βj = 1 (27)

2.8.2.3 News Impact Not defined.

3If using a multiplicative intercept choice, then σ̄2 =
exp

(

ω+

∑

n

k=1
ξkχ̄k

)

1−P
.

4Though many times it is also possible that this is the result of omitted structural breaks
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2.8.2.4 Model Constraints

• 1 > αj > 0
• 1 > βj > 0
• ω > 0
• P = 1

2.8.2.5 Forecast Same as the the vanilla GARCH forecast in Section 2.8.1.

2.8.3 Exponentially Weighted Moving Average (ewma)

The Exponentially Weighted Moving Average (ewma) model is a restricted igarch model where the drift
term (ω) is set to zero. It has proven popular among some practitioners for it’s simplicity and speed, with
coefficients most often hard coded rather than estimated, based on prior knowledge. However, as mentioned
in Section 2.8.2 the variance will converge to zero in a finite number of steps so it is unlikely to be a good
model for anything but very short term forecasting.

2.8.3.1 Equation The ewma equation is usually written as σ2
t = (1 − λ) ε2

t−1 + λσ2
t−1, but we present

below the more general model which shows that it is a restricted igarch model with no drift (although it is
always possible to include regressors).

ωt =

m
∑

k=1

ξkχk,t

σ2
t = ωt +

q
∑

j=1

αjε
2
t−j +

p
∑

j=1

βjσ
2
t−j

(28)

2.8.3.2 Persistence Since this is simply a restricted igarch model, the persistence is set to 1 and forms
a binding constraint on the parameters as in (27).

2.8.3.3 News Impact Not defined.

2.8.3.4 Forecast Same as the the vanilla GARCH forecast in Section 2.8.1 with ω set to zero.

2.8.4 Exponential GARCH (egarch)

The exponential GARCH model of Nelson (1991) allows for asymmetric effects between positive and negative
returns, and does not require specific parameter restrictions to ensure positivity of the variance since the
modelling is performed on the log variance.

2.8.4.1 Equation

ωt = ω +

m
∑

k=1

ξkχk,t

loge

(

σ2
t

)

= ωt +

q
∑

j=1

(αjzt−j + γj (|zt−j | − E |zt−j |)) +

p
∑

j=1

βj loge

(

σ2
t−j

)

(29)

where zt = εt

σt
, with expectation of the absolute moment given by:

E |zt−j | =

∞
∫

−∞

|z|D (z, 0, 1, ζ, ν, λ) dz (30)

9



For symmetric distributions, the absolute moment is usually available in closed form (such as in the Gaussian

case where it is
√

2
π ). For other distributions this is calculated using Gauss-Kronrod quadrature in the C++

TMB code so that it is forms part of the autodiff tape.

2.8.4.2 Initialization

loge σ
2
t−j = loge

(

1

T

T
∑

t=1

ε2
t

)

, (t− j) ≤ 0

z2
t−j = 0, (t− j) ≤ 0

(|zt−j | − E|zt−j |) = 0, (t− j) ≤ 0

(31)

where the first equation is used in the initialization of the GARCH recursion, whilst the second and third
equations are for the ARCH initialization.

This is the default choice, but other choices such as less than full sample and backcasting are also available
and described in Section 2.1.

2.8.4.3 Persistence The persistence has a rather simple form based on the sum of the moving average
coefficients.

P =

p
∑

j=1

βj (32)

2.8.4.4 Unconditional Variance The unconditional variance of an EGARCH(1,1) model, is given by
the following equation:

σ̄2 = exp









ω +
m
∑

k=1

ξkχ̄k

1 − β









∞
∏

i=1

E
[

exp
(

βi−1g (zt)
)]

(33)

where g (zt) = αzt + γ (|zt| − E|zt|) (see He et al. (2002)), and E
[

exp
(

βi−1g (zt)
)]

is calculated by numerical
quadrature:

∞
∫

−∞

exp
(

βi−1
1 g (x)

)

D (x,0,1,ζ,ν,λ) dx (34)

We approximate the infinite product by truncating i to 1000 which we found is more than sufficient for
convergence.

For higher order GARCH model, i.e. p, q > 1, the unconditional variance is approximated via simulation,
averaging the variance over 100 simulations of length 25000.

2.8.4.5 News Impact

σ2
i = exp

(

ω +

m
∑

k=1

ξkχ̄k + αzi + γ (|zi| − E |zi|) + βloge

(

σ2
)

)

(35)

where σ̄2, represents the unconditional variance as given in Equation (33).
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2.8.4.6 Model Constraints

• P < 1

2.8.4.7 Forecast For the max(p, q) <= 1, the forecast for t+ h, h > 1 is:

σ2
t+h=

(

σ2
t+1

)βh−1

exp

(

1−βh−1

1−β

(

ω+

m
∑

k=1

ξkχk,t+h

))

∞
∏

i=1

E
[

exp
(

βi−1g (zt)
)]

(36)

where g (x) = (α1x+ γ1 (|x| − κ)), and κ as in (30). We approximate the infinite product in the equation by
truncating it to 1000 terms. For higher order models, the forecast is approximated via simulation.

2.8.5 GJR GARCH (gjrgarch)

The GJR GARCH model of Glosten et al. (1993) models positive and negative shocks on the conditional
variance asymmetrically using a leverage term for past squared, negative innovations via the indicator function
I.

2.8.5.1 Equation

ωt = ω +

m
∑

k=1

ξkχk,t

σ2
t = ωt +

q
∑

j=1

(

αjε
2
t−j + γjI[εt−j≤0]ε

2
t−j

)

+

p
∑

j=1

βjσ
2
t−j

(37)

where γj now represents the leverage term. The indicator function I takes on value 1 for ε ≤ 0 and 0 otherwise.
Because of the presence of the indicator function, the persistence of the model now crucially depends on the
asymmetry of the conditional distribution.

2.8.5.2 Initialization

σ2
t−j =

1

T

T
∑

t=1

ε2
t , (t− j) ≤ 0

ε2
t−j =

1

T

T
∑

t=1

ε2
t , (t− j) ≤ 0

I[εt−j≤0]ε
2
t−j =

1

T

T
∑

t=i

I[εt≤0]ε
2
t , (t− j) ≤ 0

(38)

2.8.5.3 Persistence

P =

q
∑

j=1

αj +

p
∑

j=1

βj +

q
∑

j=1

γjκ (39)

where κ is the expected value of εt ≤ 0. Since this represents the probability of being less than zero, we can
work directly with the standardized innovations when using the location scale distributions5, zt:

κ = E
[

I[zt−j≤0]

]

=

0
∫

−∞

D (z, 0, 1, ζ, ν, λ) dz
(40)

5for details see the tsdistributions package.
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For symmetric distributions this value is always 0.5, but for skewed distributions this is calculated using
Gauss-Kronrod quadrature in the C++ TMB code so that it is forms part of the autodiff tape allowing to
also extract the Jacobian of this function for use with the inequality constraint in the nloptr solver.

2.8.5.4 News Impact

σ2
i = ω +

m
∑

k=1

ξkχ̄k + αε2
i + γI[εi≤0]ε

2
i + βσ̄2 (41)

where σ̄2 =

ω+

m
∑

k=1

ξkχ̄k

1−P , represents the long run unconditional variance.

2.8.5.5 Model Constraints

• 1 > αj > 0
• 1 > βj > 0
• αj + γj > 0
• ω > 0
• P < 1

Note that we also constrain γj > −1. The Jacobian of the inequality constraints is calculated either
analytically or using autodiff. For higher order models, it is suggested that the constraints on αj and γj be
relaxed to allow for non positive values. This can be achieved by changing the lower value in the parmatrix

slot of the specification.

2.8.5.6 Forecast

σ2
t+h = ω +

m
∑

k=1

ξkχk,t+h +

q
∑

j=1

αjσ
2
t+h−j + γjκσ

2
t+h−j +

p
∑

j=1

βjσ
2
t+h−j , (h− j) > 0 (42)

where κ is the expected value of εt ≤ 0, see (40).

2.8.6 Asymmetric Power ARCH (aparch)

The asymmetric power ARCH model of Ding et al. (1993) allows for both leverage and the Taylor effect,
named after Taylor (1986) who observed that the sample autocorrelation of absolute returns was usually
larger than that of squared returns.

2.8.6.1 Equation

ωt = ω +
m
∑

k=1

ξkχk,t

σδ
t = ωt +

q
∑

j=1

αj (|εt−j | − γjεt−j)
δ

+

p
∑

j=1

βjσ
δ
t−j

(43)

where δ ∈ R
+, being a Box-Cox transformation of σt, and γj the coefficient in the leverage term.

2.8.6.2 Initialization See Laurent (2004) page 52:

σδ
t−j =

(

1

T

T
∑

t=1

ε2
t

)(δ/2)

, (t− j) ≤ 0

(|εt−j | − γjεt−j)
δ

=
1

T

T
∑

t=i

(|εt| − γjεt)
δ
, (t− j) ≤ 0

(44)
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2.8.6.3 Persistence

P =

p
∑

j=1

βj +

q
∑

j=1

αjκj (45)

where κj is the expected value of the standardized residuals zt under the Box-Cox transformation of the term
which includes the leverage coefficient:

κj = E (|zt−j | − γjzt−j)
δ

=

∞
∫

−∞

(|z| − γjz)
δ
D (z, 0, 1, ζ, ν, λ) dz

(46)

For symmetric distributions there are closed form solutions for this expression, but for skewed distributions
this is calculated using Gauss-Kronrod quadrature in the C++ TMB code so that it is forms part of the
autodiff tape allowing to also extract the Jacobian of this function for use with the inequality constraint in
the nloptr solver.

2.8.6.4 News Impact

σ2
i =

(

ω +

m
∑

k=1

ξkχ̄k + α (|εi| − γεi)
δ

+ βσ̄δ

)
2
δ

(47)

where σ̄δ =

ω+

m
∑

k=1

ξkχ̄k

1−P , represents the long run unconditional volatility raised to the power of δ.

2.8.6.5 Model Constraints

• 1 > αj > 0
• 1 > βj > 0
• |γj | < 1
• δ > 0
• ω > 0
• P < 1

Non-negativity constraints on αj may be relaxed for higher order models by changing the lower parameter
in the parmatrix of the specification object prior to estimation.

2.8.6.6 Forecast

σ2
t+h =



ω +

m
∑

k=1

ξkχk,t+h +

q
∑

j=1

αjκjσ
δ
t+h−j +

p
∑

j=1

βjσ
δ
t+h−j





2/δ

, (h− j) > 0 (48)

where κj = E (|zt−j | − γjzt−j)
δ
, see (46).

2.8.7 Family GARCH (fgarch)

The family GARCH model of Hentschel (1995) is a large omnibus model which subsumes some of the most
popular GARCH models. It allows for both shifts and rotations in the news impact curve, where the shift is
the main source of asymmetry for small shocks while rotation drives larger shocks. The following restrictions
in the parameters leads to specific models:

• GARCH: δ = 2, ηj = γj = 0
• Absolute Value GARCH: δ = 1, |γj | ≤ 1
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• GJR GARCH: δ = 2,ηj = 0
• Threshold GARCH: δ = 1,ηj = 0,|γj | ≤ 1
• Nonlinear GARCH: γj = ηj = 0
• Nonlinear Asymmetric GARCH: δ = 2,γj = 0
• APARCH: ηj = 0, |γj | ≤ 1

2.8.7.1 Equation

ωt = ω +
m
∑

k=1

ξkχk,t

σδ
t = ωt +

q
∑

j=1

αjσ
δ
t−j (|zt−j − ηj | − γj (zt−j − ηj))

δ
+

p
∑

j=1

βjσ
δ
t−j

(49)

The original formulation, takes a slightly different form:

ωt = ω +

m
∑

k=1

ξjχk,t

σδ
t = ωt +

q
∑

j=1

αjσ
δ
t−j (|zt−j − ηj | − γj (zt−j − ηj))

λ
+

p
∑

j=1

βjσ
δ
t−j

(50)

which accommodates the exponential GARCH model as well as a more flexible transformation, albeit more
computationally demanding. The tsgarch package does not adopt this more general formulation, instead
setting λ = δ.

2.8.7.2 Initialization

σδ
t−j =

(

1

T

T
∑

t=1

ε2
t

)(δ/2)

, (t− j) ≤ 0

(|zt−j − ηj | − γj (zt−j − ηj))
δ

=
1

T

T
∑

t=i

(|zt − ηj | − γj(zt − ηj))
δ
, (t− j) ≤ 0

(51)

2.8.7.3 Persistence

P =

p
∑

j=1

βj +

q
∑

j=1

αjκj (52)

where κj is the expected value of the standardized residuals zt under the Box-Cox transformation of the
absolute value asymmetry term

κj = E (|zt−j − ηj | − γj (zt−j − ηj))
δ

=

∞
∫

−∞

(|z − ηj | − γj (z − ηj))
δ
D (z, 0, 1, ζ, ν, λ) dz

(53)

There are no simple closed form solutions for this expression so it is calculated using Gauss-Kronrod quadrature
in the C++ TMB code so that it is forms part of the autodiff tape allowing to also extract the Jacobian of
this function for use with the inequality constraint in the nloptr solver.
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2.8.7.4 News Impact

σ2
i =

(

ω +

m
∑

k=1

ξkχ̄k + ασ̄δ (|zi − η| − γ (zi − η))
δ

+ βσ̄δ

)
2
δ

(54)

where σ̄δ =

ω+
m
∑

k=1

ξkχ̄k

1−P , represents the long run unconditional volatility raised to the power of δ.

2.8.7.5 Model Constraints

• 1 > αj > 0
• 1 > βj > 0
• |γj | < 1
• −10 < |ηj | < 10
• δ > 0
• ω > 0
• P < 1

Non-negativity constraints on αj may be relaxed for higher order models by changing the lower parameter
in the parmatrix of the specification object prior to estimation.

2.8.7.6 Forecast

σ2
t+h =



ω +

m
∑

k=1

ξkχk,t+h +

q
∑

j=1

αjκjσ
δ
t+h−j +

p
∑

j=1

βjσ
δ
t+h−j





2/δ

, (h− j) > 0 (55)

where κj is the expected value of the standardized residuals zt under the Box-Cox transformation of the
absolute value asymmetry term, see (53).

2.8.8 Component GARCH (cgarch)

The model of Lee and Engle (1999) decomposes the conditional variance into a permanent and transitory
component so as to investigate the long- and short-run movements of volatility affecting securities.

2.8.8.1 Equation

qt = ω +

m
∑

k=1

ξkχk,t + ρqt−1 + φ
(

ε2
t−1 − σ2

t−1

)

σ2
t = qt +

q
∑

j=1

αj

(

ε2
t−j − qt−j

)

+

p
∑

j=1

βj

(

σ2
t−j − qt−j

)

(56)

The process can be re-written in an alternative form to better highlight the decomposition of the permanent
and transitory components, shown below for the Component GARCH(1,1) model:

Permanent: qt = ω +

m
∑

k=1

ξkχk,t + ρqt−1 + φ
(

ε2
t−1 − σ2

t−1

)

Transitory: st = (α+ β) st−1 + α
(

ε2
t−1 − σ2

t−1

)

Total: σ2
t = qt + st

(57)

The parameters α and φ correspond to immediate impacts of volatility shocks
(

ε2
t−j − σ2

t−j

)

on the transitory
and permanent components, whereas (α+ β) and ρ measure the persistence of the transitory and permanent
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components, respectively. The model as currently implemented allows for higher order in the transitory
component but no higher orders in the permanent component. The regressors only enter through the
permanent component equation.6

2.8.8.2 Initialization The transitory component is initialized to 0, whilst the squared residuals, variance
and permanent component are initialized to the sample variance. As a result, the initial squared residuals
and variance cancel out during initialization.

ε2
t−j , σ

2
t−j , qt−j =

1

T

T
∑

t=1

ε2
t , (t− j) ≤ 0

st−j = 0, (t− j) ≤ 0

(58)

2.8.8.3 Persistence

Transitory: PT =

q
∑

j=1

αj +

p
∑

j=1

βj

Permanent: PP = ρ

(59)

2.8.8.4 News Impact Since the component GARCH model can be represented as a restricted
GARCH(2,2) model, we derive the news impact curve using this representation to arrive at the following
equation:

σ2
t = ω +

m
∑

k=1

ξkχ̄k + ρσ̄2 + φ
(

ε2
t − σ̄2

)

+ α
(

ε2
t − σ̄2

)

(60)

where the unconditional variance σ̄2 =

ω+

m
∑

k=1

ξkχ̄k

1−ρ .

2.8.8.5 Constraints

• 1 > αj > 0
• 1 > βj > 0
• 1 > φ > 0
• 1 > ρ > 0
• ω > 0
• 1 > PP > PT > 0
• β > φ

2.8.8.6 Forecast

qt+h =









ω +
m
∑

k=1

ξkχk,t+h

1 − ρ









+ ρk









qt −
ω +

m
∑

k=1

ξkχk,t+h

1 − ρ









st+h = Ph
T

(

σ2
t − qt

)

σ2
t+h = qt+h + st+h

(61)

where PT is the transitory persistence as defined in (59). As h grows larger, the forecast converges to

ω+

m
∑

k=1

ξkχk,t+h

1−ρ .

6Some implementations in other software packages allow for more flexibility, allowing regressors to enter into both components.

16



3 Package Methods

The tsgarch package includes a number of methods which can be used with either the tsgarch.spec

or tsgarch.estimate objects. These include standard methods from the stats package such residuals,
fitted, sigma, logLik, AIC, BIC, confint, vcov, coef, predict and simulate. Additionally, the following
methods from the tsmethods package are included:

• tsfilter: online filtering
• tsbacktest: backtesting
• tsprofile: parameter profiling through simulation/estimation
• unconditional: unconditional variance
• tsequation: model equations (used mainly by the as_flextable method)
• pit: probability integral transform
• persistence: model persistence

Also included from the sandwich package are methods for estfun and bread.

4 Conclusion

The package is still in active development. Additional models may be added, porting some of the remaining
rugarch models, but the focus is likely to be on models for high frequency data and porting the multivariate
models from rmgarch.

A separate package called tstests includes a number of tests which were previously part of rugarch and will
be released to CRAN soon.
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