/* This code was written as part of the CMU Common Lisp project at Carnegie Mellon University, and has been placed in the public domain. */ #include #include "sbcl.h" #include "runtime.h" #include "arch.h" #include "globals.h" #include "validate.h" #include "os.h" #include "lispregs.h" #include "signal.h" #include "alloc.h" #include "interrupt.h" #include "interr.h" #include "breakpoint.h" #include "genesis/constants.h" #define INSN_LEN sizeof(unsigned int) void arch_init(void) { return; } os_vm_address_t arch_get_bad_addr(int signam, siginfo_t *siginfo, os_context_t *context) { /* Classic CMUCL comment: Finding the bad address on the mips is easy. */ return (os_vm_address_t)siginfo->si_addr; } static inline unsigned int os_context_register(os_context_t *context, int offset) { return (unsigned int)(*os_context_register_addr(context, offset)); } static inline unsigned int os_context_pc(os_context_t *context) { return (unsigned int)(*os_context_pc_addr(context)); } static inline unsigned int os_context_insn(os_context_t *context) { if (os_context_bd_cause(context)) return *(unsigned int *)(os_context_pc(context) + INSN_LEN); else return *(unsigned int *)(os_context_pc(context)); } boolean arch_insn_with_bdelay_p(unsigned int insn) { switch (insn >> 26) { case 0x0: switch (insn & 0x3f) { /* register jumps */ case 0x08: case 0x09: return 1; } break; /* branches and immediate jumps */ case 0x1: switch ((insn >> 16) & 0x1f) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x10: case 0x11: case 0x12: case 0x13: return 1; } break; case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: return 1; case 0x10: case 0x11: case 0x12: switch ((insn >> 21) & 0x1f) { /* CP0/CP1/CP2 branches */ case 0x08: return 1; } break; /* branch likely (MIPS II) */ case 0x14: case 0x15: case 0x16: case 0x17: return 1; } return 0; } /* Find the next instruction in the control flow. For a instruction with branch delay slot, this is the branch/jump target if the branch is taken, and PC + 8 if it is not taken. For other instructions it is PC + 4. */ static unsigned int next_insn_addr(os_context_t *context, unsigned int inst) { unsigned int opcode = inst >> 26; unsigned int r1 = (inst >> 21) & 0x1f; unsigned int r2 = (inst >> 16) & 0x1f; unsigned int r3 = (inst >> 11) & 0x1f; unsigned int disp = ((inst&(1<<15)) ? inst | (-1 << 16) : inst&0x7fff) << 2; unsigned int jtgt = (os_context_pc(context) & ~0x0fffffff) | (inst&0x3ffffff) << 2; unsigned int tgt = os_context_pc(context); switch(opcode) { case 0x0: /* jr, jalr */ switch(inst & 0x3f) { case 0x08: /* jr */ tgt = os_context_register(context, r1); break; case 0x09: /* jalr */ tgt = os_context_register(context, r1); *os_context_register_addr(context, r3) = os_context_pc(context) + INSN_LEN; break; default: tgt += INSN_LEN; break; } break; case 0x1: /* bltz, bgez, bltzal, bgezal, ... */ switch(r2) { case 0x00: /* bltz */ case 0x02: /* bltzl */ if(os_context_register(context, r1) < 0) tgt += disp; else tgt += INSN_LEN; break; case 0x01: /* bgez */ case 0x03: /* bgezl */ if(os_context_register(context, r1) >= 0) tgt += disp; else tgt += INSN_LEN; break; case 0x10: /* bltzal */ case 0x12: /* bltzall */ if(os_context_register(context, r1) < 0) { tgt += disp; *os_context_register_addr(context, 31) = os_context_pc(context) + INSN_LEN; } else tgt += INSN_LEN; break; case 0x11: /* bgezal */ case 0x13: /* bgezall */ if(os_context_register(context, r1) >= 0) { tgt += disp; *os_context_register_addr(context, 31) = os_context_pc(context) + INSN_LEN; } else tgt += INSN_LEN; break; default: tgt += INSN_LEN; break; } break; case 0x2: /* j */ tgt = jtgt; break; case 0x3: /* jal */ tgt = jtgt; *os_context_register_addr(context, 31) = os_context_pc(context) + INSN_LEN; break; case 0x4: /* beq */ case 0x14: /* beql */ if(os_context_register(context, r1) == os_context_register(context, r2)) tgt += disp; else tgt += INSN_LEN; break; case 0x5: /* bne */ case 0x15: /* bnel */ if(os_context_register(context, r1) != os_context_register(context, r2)) tgt += disp; else tgt += INSN_LEN; break; case 0x6: /* blez */ case 0x16: /* blezl */ if(os_context_register(context, r1) <= os_context_register(context, r2)) tgt += disp; else tgt += INSN_LEN; break; case 0x7: /* bgtz */ case 0x17: /* bgtzl */ if(os_context_register(context, r1) > os_context_register(context, r2)) tgt += disp; else tgt += INSN_LEN; break; case 0x10: case 0x11: case 0x12: switch (r1) { /* CP0/CP1/CP2 branches */ case 0x08: /* FIXME */ tgt += INSN_LEN; break; } break; default: tgt += INSN_LEN; break; } return tgt; } void arch_skip_instruction(os_context_t *context) { /* Skip the offending instruction. Don't use os_context_insn here, since in case of a branch we want the branch insn, not the delay slot. */ *os_context_pc_addr(context) = (os_context_register_t) next_insn_addr(context, *(unsigned int *)(os_context_pc(context))); } unsigned char * arch_internal_error_arguments(os_context_t *context) { if (os_context_bd_cause(context)) return (unsigned char *)(os_context_pc(context) + (INSN_LEN * 2)); else return (unsigned char *)(os_context_pc(context) + INSN_LEN); } boolean arch_pseudo_atomic_atomic(os_context_t *context) { return os_context_register(context, reg_ALLOC) & 1; } void arch_set_pseudo_atomic_interrupted(os_context_t *context) { *os_context_register_addr(context, reg_NL4) |= -1LL<<31; } void arch_clear_pseudo_atomic_interrupted(os_context_t *context) { *os_context_register_addr(context, reg_NL4) &= ~(-1LL<<31); } unsigned int arch_install_breakpoint(void *pc) { unsigned int *ptr = (unsigned int *)pc; unsigned int insn; /* Don't install over a branch/jump with delay slot. */ if (arch_insn_with_bdelay_p(*ptr)) ptr++; insn = *ptr; *ptr = (trap_Breakpoint << 6) | 0xd; os_flush_icache((os_vm_address_t)ptr, INSN_LEN); return insn; } static inline unsigned int arch_install_after_breakpoint(void *pc) { unsigned int *ptr = (unsigned int *)pc; unsigned int insn; /* Don't install over a branch/jump with delay slot. */ if (arch_insn_with_bdelay_p(*ptr)) ptr++; insn = *ptr; *ptr = (trap_AfterBreakpoint << 6) | 0xd; os_flush_icache((os_vm_address_t)ptr, INSN_LEN); return insn; } void arch_remove_breakpoint(void *pc, unsigned int orig_inst) { unsigned int *ptr = (unsigned int *)pc; /* We may remove from a branch delay slot. */ if (arch_insn_with_bdelay_p(*ptr)) ptr++; *ptr = orig_inst; os_flush_icache((os_vm_address_t)ptr, INSN_LEN); } /* Perform the instruction that we overwrote with a breakpoint. As we don't have a single-step facility, this means we have to: - put the instruction back - put a second breakpoint at the following instruction, set after_breakpoint and continue execution. When the second breakpoint is hit (very shortly thereafter, we hope) sigtrap_handler gets called again, but follows the AfterBreakpoint arm, which - puts a bpt back in the first breakpoint place (running across a breakpoint shouldn't cause it to be uninstalled) - replaces the second bpt with the instruction it was meant to be - carries on Clear? */ static unsigned int *skipped_break_addr, displaced_after_inst; static sigset_t orig_sigmask; void arch_do_displaced_inst(os_context_t *context, unsigned int orig_inst) { unsigned int *pc = (unsigned int *)os_context_pc(context); unsigned int *next_pc; orig_sigmask = *os_context_sigmask_addr(context); sigaddset_blockable(os_context_sigmask_addr(context)); /* Put the original instruction back. */ arch_remove_breakpoint(pc, orig_inst); skipped_break_addr = pc; /* Figure out where it goes. */ next_pc = (unsigned int *)next_insn_addr(context, *pc); displaced_after_inst = arch_install_after_breakpoint(next_pc); } void arch_handle_breakpoint(os_context_t *context) { handle_breakpoint(context); } void arch_handle_fun_end_breakpoint(os_context_t *context) { *os_context_pc_addr(context) = (os_context_register_t)(unsigned int) handle_fun_end_breakpoint(context); } void arch_handle_after_breakpoint(os_context_t *context) { arch_install_breakpoint(skipped_break_addr); arch_remove_breakpoint((unsigned int *)os_context_pc(context), displaced_after_inst); *os_context_sigmask_addr(context) = orig_sigmask; } void arch_handle_single_step_trap(os_context_t *context, int trap) { unsigned int code = *((u32 *)(os_context_pc(context))); int register_offset = code >> 11 & 0x1f; handle_single_step_trap(context, trap, register_offset); arch_skip_instruction(context); } static void sigtrap_handler(int signal, siginfo_t *info, void *void_context) { os_context_t *context = arch_os_get_context(&void_context); unsigned int code = (os_context_insn(context) >> 6) & 0xfffff; #ifdef LISP_FEATURE_LINUX os_restore_fp_control(context); #endif /* FIXME: This magic number is pseudo-atomic-trap from parms.lisp. * Genesis should provide the proper #define, but it specialcases * pseudo-atomic-trap to work around some oddity on SPARC. * Eventually this should go into handle_trap. */ if (code==0x10) { arch_clear_pseudo_atomic_interrupted(context); arch_skip_instruction(context); interrupt_handle_pending(context); } else handle_trap(context,code & 0x1f); } #define FIXNUM_VALUE(lispobj) (((int)lispobj) >> N_FIXNUM_TAG_BITS) static void sigfpe_handler(int signal, siginfo_t *info, void *void_context) { os_context_t *context = arch_os_get_context(&void_context); unsigned int bad_inst = os_context_insn(context); unsigned int op, rs, rt, rd, funct, dest = 32; int immed; int result; #ifdef LISP_FEATURE_LINUX os_restore_fp_control(context); #endif op = (bad_inst >> 26) & 0x3f; rs = (bad_inst >> 21) & 0x1f; rt = (bad_inst >> 16) & 0x1f; rd = (bad_inst >> 11) & 0x1f; funct = bad_inst & 0x3f; immed = (((int)(bad_inst & 0xffff)) << 16) >> 16; switch (op) { case 0x0: /* SPECIAL */ switch (funct) { case 0x20: /* ADD */ result = FIXNUM_VALUE(os_context_register(context, rs)) + FIXNUM_VALUE(os_context_register(context, rt)); dest = rd; break; case 0x22: /* SUB */ result = FIXNUM_VALUE(os_context_register(context, rs)) - FIXNUM_VALUE(os_context_register(context, rt)); dest = rd; break; default: interrupt_handle_now(signal, info, context); return; } break; case 0x8: /* ADDI */ result = FIXNUM_VALUE(os_context_register(context,rs)) + (immed >> N_FIXNUM_TAG_BITS); dest = rt; break; default: interrupt_handle_now(signal, info, context); return; } dynamic_space_free_pointer = (lispobj *)(unsigned int)*os_context_register_addr(context,reg_ALLOC); *os_context_register_addr(context,dest) = alloc_number(result); *os_context_register_addr(context, reg_ALLOC) = (unsigned int) dynamic_space_free_pointer; arch_skip_instruction(context); } unsigned int arch_get_fp_control(void) { register unsigned int ret asm("$2"); __asm__ __volatile__ ("cfc1 %0, $31" : "=r" (ret)); return ret; } void arch_set_fp_control(unsigned int fp) { __asm__ __volatile__ ("ctc1 %0, $31" :: "r" (fp)); } void arch_install_interrupt_handlers(void) { undoably_install_low_level_interrupt_handler(SIGTRAP,sigtrap_handler); undoably_install_low_level_interrupt_handler(SIGFPE,sigfpe_handler); } #ifdef LISP_FEATURE_LINKAGE_TABLE /* Linkage tables for MIPS Linkage entry size is 16, because we need 4 instructions to implement a jump. The entry size constant is defined in parms.lisp. Define the register to use in the linkage jump table. For MIPS this has to be the PIC call register $25 aka t9 aka reg_ALLOC. */ #define LINKAGE_TEMP_REG reg_ALLOC /* Insert the necessary jump instructions at the given address. */ void arch_write_linkage_table_jmp(void* reloc_addr, void *target_addr) { /* Make JMP to function entry. The instruction sequence is: lui $25, 0, %hi(addr) addiu $25, $25, %lo(addr) jr $25 nop */ unsigned int *insn = (unsigned int *)reloc_addr; unsigned int addr = (unsigned int)target_addr; unsigned int hi = ((addr + 0x8000) >> 16) & 0xffff; unsigned int lo = addr & 0xffff; *insn++ = (15 << 26) | (LINKAGE_TEMP_REG << 16) | hi; *insn++ = ((9 << 26) | (LINKAGE_TEMP_REG << 21) | (LINKAGE_TEMP_REG << 16) | lo); *insn++ = (LINKAGE_TEMP_REG << 21) | 8; *insn = 0; os_flush_icache((os_vm_address_t)reloc_addr, LINKAGE_TABLE_ENTRY_SIZE); } void arch_write_linkage_table_ref(void *reloc_addr, void *target_addr) { *(unsigned int *)reloc_addr = (unsigned int)target_addr; } #endif