/* interp.c -- AArch64 sim interface to GDB.
Copyright (C) 2015-2024 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* This must come before any other includes. */
#include "defs.h"
#include
#include
#include
#include
#include
#include
#include "ansidecl.h"
#include "bfd.h"
#include "sim/callback.h"
#include "sim/sim.h"
#include "gdb/signals.h"
#include "sim/sim-aarch64.h"
#include "sim-main.h"
#include "sim-options.h"
#include "memory.h"
#include "simulator.h"
#include "sim-assert.h"
#include "aarch64-sim.h"
/* Filter out (in place) symbols that are useless for disassembly.
COUNT is the number of elements in SYMBOLS.
Return the number of useful symbols. */
static long
remove_useless_symbols (asymbol **symbols, long count)
{
asymbol **in_ptr = symbols;
asymbol **out_ptr = symbols;
while (count-- > 0)
{
asymbol *sym = *in_ptr++;
if (strstr (sym->name, "gcc2_compiled"))
continue;
if (sym->name == NULL || sym->name[0] == '\0')
continue;
if (sym->flags & (BSF_DEBUGGING))
continue;
if ( bfd_is_und_section (sym->section)
|| bfd_is_com_section (sym->section))
continue;
if (sym->name[0] == '$')
continue;
*out_ptr++ = sym;
}
return out_ptr - symbols;
}
static signed int
compare_symbols (const void *ap, const void *bp)
{
const asymbol *a = * (const asymbol **) ap;
const asymbol *b = * (const asymbol **) bp;
if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
return 1;
if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
return -1;
return 0;
}
/* Find the name of the function at ADDR. */
const char *
aarch64_get_func (SIM_DESC sd, uint64_t addr)
{
long symcount = STATE_PROG_SYMS_COUNT (sd);
asymbol **symtab = STATE_PROG_SYMS (sd);
int min, max;
min = -1;
max = symcount;
while (min < max - 1)
{
int sym;
bfd_vma sa;
sym = (min + max) / 2;
sa = bfd_asymbol_value (symtab[sym]);
if (sa > addr)
max = sym;
else if (sa < addr)
min = sym;
else
{
min = sym;
break;
}
}
if (min != -1)
return bfd_asymbol_name (symtab [min]);
return "";
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
host_callback *cb = STATE_CALLBACK (sd);
bfd_vma addr = 0;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
aarch64_set_next_PC (cpu, addr);
aarch64_update_PC (cpu);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
if (STATE_PROG_ENVP (sd) != env)
{
freeargv (STATE_PROG_ENVP (sd));
STATE_PROG_ENVP (sd) = dupargv (env);
}
cb->argv = STATE_PROG_ARGV (sd);
cb->envp = STATE_PROG_ENVP (sd);
if (trace_load_symbols (sd))
{
STATE_PROG_SYMS_COUNT (sd) =
remove_useless_symbols (STATE_PROG_SYMS (sd),
STATE_PROG_SYMS_COUNT (sd));
qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
sizeof (asymbol *), compare_symbols);
}
aarch64_init (cpu, addr);
return SIM_RC_OK;
}
/* Read the LENGTH bytes at BUF as a little-endian value. */
static bfd_vma
get_le (const unsigned char *buf, unsigned int length)
{
bfd_vma acc = 0;
while (length -- > 0)
acc = (acc << 8) + buf[length];
return acc;
}
/* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
static void
put_le (unsigned char *buf, unsigned int length, bfd_vma val)
{
int i;
for (i = 0; i < length; i++)
{
buf[i] = val & 0xff;
val >>= 8;
}
}
static int
check_regno (int regno)
{
return 0 <= regno && regno < AARCH64_MAX_REGNO;
}
static size_t
reg_size (int regno)
{
if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
return 32;
return 64;
}
static int
aarch64_reg_get (SIM_CPU *cpu, int regno, void *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return 0;
size = reg_size (regno);
if (length != size)
return 0;
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
val = aarch64_get_reg_u64 (cpu, regno, 0);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
val = aarch64_get_FP_double (cpu, regno - 32);
break;
case AARCH64_PC_REGNO:
val = aarch64_get_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
val = aarch64_get_CPSR (cpu);
break;
case AARCH64_FPSR_REGNO:
val = aarch64_get_FPSR (cpu);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return -1;
}
put_le (buf, length, val);
return size;
}
static int
aarch64_reg_set (SIM_CPU *cpu, int regno, const void *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return -1;
size = reg_size (regno);
if (length != size)
return -1;
val = get_le (buf, length);
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
aarch64_set_reg_u64 (cpu, regno, 1, val);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
aarch64_set_FP_double (cpu, regno - 32, (double) val);
break;
case AARCH64_PC_REGNO:
aarch64_set_next_PC (cpu, val);
aarch64_update_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
aarch64_set_CPSR (cpu, val);
break;
case AARCH64_FPSR_REGNO:
aarch64_set_FPSR (cpu, val);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return 0;
}
return size;
}
static sim_cia
aarch64_pc_get (sim_cpu *cpu)
{
return aarch64_get_PC (cpu);
}
static void
aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
{
aarch64_set_next_PC (cpu, pc);
aarch64_update_PC (cpu);
}
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
struct host_callback_struct * callback,
struct bfd * abfd,
char * const * argv)
{
sim_cpu *cpu;
SIM_DESC sd = sim_state_alloc (kind, callback);
if (sd == NULL)
return sd;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* We use NONSTRICT_ALIGNMENT as the default because AArch64 only enforces
4-byte alignment, even for 8-byte reads/writes. The common core does not
support this, so we opt for non-strict alignment instead. */
current_alignment = NONSTRICT_ALIGNMENT;
/* Perform the initialization steps one by one. */
if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct aarch64_sim_cpu))
!= SIM_RC_OK
|| sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
|| sim_parse_args (sd, argv) != SIM_RC_OK
|| sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK
|| sim_config (sd) != SIM_RC_OK
|| sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return NULL;
}
aarch64_init_LIT_table ();
assert (MAX_NR_PROCESSORS == 1);
cpu = STATE_CPU (sd, 0);
CPU_PC_FETCH (cpu) = aarch64_pc_get;
CPU_PC_STORE (cpu) = aarch64_pc_set;
CPU_REG_FETCH (cpu) = aarch64_reg_get;
CPU_REG_STORE (cpu) = aarch64_reg_set;
/* Set SP, FP and PC to 0 and set LR to -1
so we can detect a top-level return. */
aarch64_set_reg_u64 (cpu, SP, 1, 0);
aarch64_set_reg_u64 (cpu, FP, 1, 0);
aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
aarch64_set_next_PC (cpu, 0);
aarch64_update_PC (cpu);
/* Default to a 128 Mbyte (== 2^27) memory space. */
sim_do_commandf (sd, "memory-size 0x8000000");
return sd;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr ATTRIBUTE_UNUSED,
int nr_cpus ATTRIBUTE_UNUSED,
int siggnal ATTRIBUTE_UNUSED)
{
aarch64_run (sd);
}