Connecting to a database

Martijn J. Schuemie

2025-01-30
Contents
1 Introduction 1
2 Obtaining drivers 1
2.1 The JAR folder o e 2
2.2 Obtaining drivers for SQL Server, Oracle, PostgreSQL, PDW, Spark, RedShift, Snowflake,
BigQuery, and Synapse oL e e e e e 2
2.3 Obtaining drivers for Netezza, Impala and InterSystems IRIS 2
2.4 Obtaining drivers for SQLite or DuckDb oo 2
3 Creating a connection 2
4 Using Windows Authentication for SQL Server 3
5 Connecting to a SQLite database 3
6 Connecting with Windows authentication from a non-windows machine 4

1 Introduction

This vignette describes how you can use the DatabaseConnector package to connect to a database.
DatabaseConnector supports these database platforms:

e Microsoft SQL Server
e Oracle

o PostgresSql

o Microsoft Parallel Data Warehouse (PDW, a.k.a. Analytics Platform System)
e Amazon Redshift

e Apache Impala

e Google BigQuery

o IBM Netezza

e SQLite

o (DataBricks)Spark

« Snowflake

e Synapse

e InterSystems IRIS

2 Obtaining drivers

Before DatabaseConnector can be used to connect to a database, the drivers for your platform need to be
downloaded to a location in the local file system, which we’ll refer to as the JAR folder.

2.1 The JAR folder

The JAR folder is just a folder in the local file system where the database drivers are stored. It is highly
recommended to use the DATABASECONNECTOR_JAR_FOLDER environmental variable to point to this folder,
which you can for example set using:

Sys.setenv ("DATABASECONNECTOR_JAR_FOLDER" = "c:/temp/jdbcDrivers")

Even better would be to add this entry to your .Renviron file:
DATABASECONNECTOR_JAR_FOLDER = 'c:/temp/jdbcDrivers'

That way, the environmental variable will be automatically set whenever you start R. A convenient way to
edit your .Renviron file is by using usethis:

install.packages("usethis")
usethis::edit_r_environ()

If you don’t use the DATABASECONNECTOR_JAR_FOLDER environmental variable, you will need to provide
the pathToDriver argument every time you call the downloadJdbcDrivers, connect, dbConnect, or
createConnectionDetails functions.

2.2 Obtaining drivers for SQL Server, Oracle, PostgreSQL, PDW, Spark, Red-
Shift, Snowflake, BigQuery, and Synapse

For your convenience these JDBC drivers are hosted on the OHDSI GitHub pages, and can be downloaded
using the downloadJdbcDrivers function. You'll first need to specify the JAR folder as described in the
previous section, for example using

Sys.setenv ("DATABASECONNECTOR_JAR_FOLDER" = "c:/temp/jdbcDrivers")

And next download the driver. For example, for PostgreSQL:

library(DatabaseConnector)
downloadJdbcDrivers("postgresql")
DatabaseConnector JDBC drivers downloaded to 'c:/temp/jdbcDrivers'.

Note that if we hadn’t specified the DATABASECONNECTOR_JAR_FOLDER environmental variable, we would have
to specify the pathToDriver argument when calling downloadJdbcDrivers.

2.3 Obtaining drivers for Netezza, Impala and InterSystems IRIS

Because of licensing reasons the drivers for BigQuery, Netezza, Impala and InterSystems IRIS are not included
but must be obtained by the user. see these instructions on how to download these drivers, which you can
also see by typing ?jdbcDrivers.

2.4 Obtaining drivers for SQLite or DuckDb

For SQLite and DuckDb we actually don’t use a JDBC driver. Instead, we use the RSQLite and duckdb
packages, respectively, which can be installed using

install.packages ("RSQLite")
install.packages("duckdb")

3 Creating a connection

To connect to a database a number of details need to be specified, such as the database platform, the location
of the server, the user name, password, and path to the driver. We can call the connect () function and

http://ohdsi.github.io/DatabaseConnector/reference/jdbcDrivers.html

specify these details directly:

conn <- connect(dbms = "postgresql",
server = "localhost/postgres",
user = "joe",
password = "secret")

Connecting using PostgreSQL driver

See this webpage or type 7connect for information on which details are required for each platform.
Note that we did not need to specify the pathToDriver argument because we previously already set
the DATABASECONNECTOR_JAR_FOLDER environmental variable.

Don’t forget to close any connection afterwards:

disconnect (conn)

Instead of providing the server name, it is also possible to provide the JDBC connection string if this is more
convenient:

conn <- connect(dbms = "postgresql",
connectionString = "jdbc:postgresql://localhost:5432/postgres",
user = "joe",
password = "secret")

Connecting using PostgreSQL driver

Sometimes we may want to first specify the connection details, and defer connecting until later. This may
be convenient for example when the connection is established inside a function, and the details need to be
passed as an argument. We can use the createConnectionDetails function for this purpose:

details <- createConnectionDetails(dbms = "postgresql",
server = "localhost/postgres",
user = "joe",
password = "secret")

conn <- connect(details)

Connecting using PostgreSQL driver

4 Using Windows Authentication for SQL Server

In some organizations using Microsoft SQL Server and Windows, it is possible to use Windows Authentication
to connect to the server, meaning you won'’t have to provide a user name and password, since your Windows
credentials will be used. This will require downloading the SQL Server authentication DLL file, and placing it
somewhere on your system path. If you don’t have rights to add files to a place on your system path, you can
place it anywhere, and set the PATH_TO_AUTH_DLL environmental variable, either using the Sys.setenv(), or
by adding it to your .Renviron file. See this webpage or type ?connect for details on where to get the DLL
(and what specific version).

5 Connecting to a SQLite database

DatabaseConnector also supports SQLite through the RSQLite package, mainly for testing and demonstration
purposes. Provide the path to the SQLite file as the server argument when connecting. If no file exists it
will be created:

conn <- connect(dbms = "sqlite", server = tempfile())

Connecting using SQLite driver

http://ohdsi.github.io/DatabaseConnector/reference/connect.html
http://ohdsi.github.io/DatabaseConnector/reference/connect.html#windows-authentication-for-sql-server-1
https://cran.r-project.org/web/packages/RSQLite/index.html

Upload cars dataset as table:

insertTable (connection = conn,
tableName = "cars",
data = cars)

Inserting data took 0.0105 secs
querySql(conn, "SELECT COUNT(*) FROM main.cars;")

COUNT (%)
1 50

disconnect (conn)

6 Connecting with Windows authentication from a non-windows
machine

Kerberos is used by Active Directory, you need to have the appropriate packages installed on your client
machine. For MacOS, the Kerberos packages are usually already installed. On Linux, you’ll have to install
krb5-user. Most of this setup comes from this site.

1. On the non-windows client machine, create or update /etc/krb5.conf so that it points to your AD
server. Here’s an example of krb5.conf:

[libdefaults]
default_realm = DOMAIN.COMPANY.COM

[realms]
DOMAIN.COMPANY.COM = {
kdc = dc-33.domain.company.com

}

2. Run kinit <username>@DOMAIN.COMPANY.COM to get a ticket granting ticket from the kerberos domain
controller (KDC). (NOTE: you want to make sure your KDC is accessible from your machine)

3. Download the latest MSSql JDBC driver.

4. Try to connect to the database with the following code in RStudio:

library(devtools)

library(DatabaseConnector)

connectionDetails <- createConnectionDetails(
dbms="sql server",

extraSettings="authenticationScheme=JavaKerberos")
¢ <- connect(connectionDetails = connectionDetails)

In RStudio, you should see that the variable ¢ has a value and the new connection in the connections
tab as well.

Note: If you are getting the below error on Mac:

%

Error in rJava::.jcall(jdbcDriver, “Ljava/sql/Connection;”, “connect”, : com.microsoft.sqlserver.jdbc.SQLServerException:

Kerberos Login failed: Integrated authentication failed. ClientConnectionld:13fb0d4e-4822-4de2-
a125-8408334cb3ed due to javax.security.auth.login.LoginException (Cannot get any of properties:
[user, USER] from con properties not available to garner authentication information from the
user)

https://github.com/Microsoft/vscode-mssql/wiki/How-to-enable-Integrated-Authentication-on-macOS-and-Linux-using-Kerberos
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-ver15

Instead of kinit you can also try /System/Library/CoreServices and find ‘Ticket Viewer’ Click ‘Add
Identity’, then enter your user name. After you click ‘Continue’, a Kerberos ticket should have been
generated.

	Introduction
	Obtaining drivers
	The JAR folder
	Obtaining drivers for SQL Server, Oracle, PostgreSQL, PDW, Spark, RedShift, Snowflake, BigQuery, and Synapse
	Obtaining drivers for Netezza, Impala and InterSystems IRIS
	Obtaining drivers for SQLite or DuckDb

	Creating a connection
	Using Windows Authentication for SQL Server
	Connecting to a SQLite database
	Connecting with Windows authentication from a non-windows machine

