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Abstract

This introduction to the R package ICS is a (slightly) modified version of Nordhausen,
Oja, and Tyler (2008c), published in the Journal of Statistical Software.

Invariant coordinate selection (ICS) has recently been introduced as a method for
exploring multivariate data. It includes as a special case a method for recovering the
unmixing matrix in independent components analysis (ICA). It also serves as a basis
for classes of multivariate nonparametric tests, and as a tool in cluster analysis or blind
discrimination. The aim of this paper is to briefly explain the (ICS) method and to
illustrate how various applications can be implemented using the R package ICS. Several
examples are used to show how the ICS method and ICS package can be used in analyzing
a multivariate data set.

Keywords: clustering, discriminant analysis, independent components analysis, invariant co-
ordinate selection, R, transformation-retransformation method.

1. Introduction

Multivariate data normally arise by collecting p measurements on n individuals or experimen-
tal units. Such data can be displayed in tables with each row representing one individual and
each column representing a particular measured variable. The resulting data matrix X is then
n × p, with the row vector xi ∈ ℜp denoting the measurements taken on the ith individual or
ith experimental unit. Hence X⊤ = [x⊤

1 , . . . , x⊤
n ]. To be consistent with the convention used

in the programming language R, all vectors are understood to be row vectors.

We begin by introducing some concepts which are used throughout the paper. An affine
transformation of a data vector xi is a transformation of the form

xi → xiA
⊤ + b, i = 1, . . . , n,

or equivalently,
X → XA⊤ + 1⊤

n b,

where A is a nonsingular matrix of order p, b ∈ ℜp, and 1n ∈ ℜn denotes a vector consisting
of all ones. Besides affine transformations and linear transformations (X → XA⊤ with
A nonsingular), other important classes of transformations are orthogonal transformations
(X → XU with U⊤U = UU⊤ = Ip), sign-change transformations (X → XJ where J is a
p × p diagonal matrix with diagonal elements ±1), and permutations (X → XP where P is a
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p×p permutation matrix, i.e., one obtained by successively permuting rows or columns of Ip).
These transformations can also be applied on the left-hand side of X, in which case A, U , J ,
and P are matrices of order n rather than of order p. Note, for example, that a right-sided
sign-change transformation simply results in a change of the sign of the jth variable if the
jth entry of J is −1, whereas a left-sided permutation transformation simply reorders the
individual observations.

A fundamental multivariate data transformation method is the so-called ‘whitening’ or ‘stan-
dardization’ of the data. This is given by

X → Z = (X − 1⊤

n x̄)COV(X)−
1

2 ,

where x̄ = 1nX/n =
∑n

i=1 xi/n is the vector of the column means of X and COV(X) =
(X − 1⊤

n x̄)⊤(X − 1⊤
n x̄)/(n − 1) is the sample covariance matrix of the columns of X. The

‘whitened’ data matrix Z has its mean at the origin (z̄ = 0), with all the variables being
standardized and uncorrelated with each other (COV(Z) = Ip).

This transformation, however, has several drawbacks. First, it is not unique in the sense that
it depends on the particular choice or definition of the square-root matrix COV(X)

1

2 . Recall
that for a symmetric positive semi-definite matrix V , a square root of V is any matrix C
such that CC⊤ = V . Two common choices for the square-root C which are uniquely defined
are the lower triangular square-root and the symmetric positive definite square-root. Second,
even for a well defined square-root matrix, the ‘whitening’ transformation is not invariant
under affine transformations of the data. Rather, one has

XA⊤[COV(XA⊤)]−
1

2 = X[COV(X)]−
1

2 U,

with U = U(X, A) being an orthogonal matrix which is dependent on both X and A. In
other words, a ‘whitened’ data matrix is only well defined up to post multiplication by an
orthogonal matrix.

Also, this ‘whitening’ transformation is not very robust since both the sample mean vector x̄
and the sample covariance matrix COV(X) are both highly non-robust statistics. In particular,
just one ‘bad’ data point can greatly affect the standardization. An obvious remedy for the
last problem is to simply replace those two statistics by more robust ones. This gives a more
general framework for a whitening transformation, namely

X → Z = [X − 1⊤

n T (X)]S(X)−
1

2 ,

where the statistic T (X) is a multivariate location statistic and S(X) is a scatter matrix.
Here, we say that T (X) is a location statistic if it is affine equivariant, i.e., if

T (XA⊤ + 1⊤

n b) = T (X)A⊤ + b

for any nonsingular matrix A of order p, and any b ∈ ℜp. The matrix S(X) is said to be a
scatter matrix if it is affine equivariate in the following sense:

S(XA⊤ + 1b) = AS(X)A⊤

with A and b as before. Such a statistic is sometimes referred to as being affine ‘covariant’.
Choosing robust statistics for T (X) and S(X) then yields a robustly whitened coordinate
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system. This new coordinate system though is still not invariant under affine transformations
of the original data matrix.

Besides whitening, there are other methods one can use to linearly transform a multivariate
data set to a new coordinate system, such as those arising in principal components anal-
ysis (PCA), those arising in independent components analysis (ICA), and those arising in
invariant coordinate selection (ICS). Principal components analysis has a long history and is
perhaps one of the most common methods used in multivariate analysis, whereas independent
components analysis is a fairly recent subject which is becoming increasing popular in areas
such as computer science, engineering, meteorology and other applied areas where multivari-
ate data arise. Invariant coordinate selection has recently been introduced as a very general
method for exploring multivariate data, and is explained in more detail in the Section 3.1.
These three methods respectively involve the following transformations of the data (here we
ignore the centering part of the transformations, which if desired could be done after the
transformation).

• Principal components analysis
The principal components are obtained by rotating the data matrix, namely

X → Z = XU⊤,

where U⊤ is an orthogonal matrix whose columns are the ordered eigenvectors of
COV(X). This gives COV(Z) = D, with D being a diagonal matrix whose diagonal ele-
ments are equal to the corresponding ordered eigenvalues of COV(X). The matrices U
and D thus correspond to those in the spectral value decomposition COV(X) = U⊤DU .
PCA can also be viewed as a rotation of the data matrix arising from first finding the
projection of maximal variance, and then finding subsequent projections of maximal
variance subject to the constraint of being uncorrelated with the previously extracting
projections.

• Independent components analysis
Unlike principal components analysis, ICA transformations presume a model. The
most common model is to presume that the p measured variables arise from a linear
transformation of p independent variables. The goal of ICA is to recover the original
independent variables. Most ICA algorithms first involve whitening the data and then
rotating them in such a way as to make the resulting components as independent as pos-
sible. When the components are derived sequentially, this typically implies finding the
‘most’ nongaussian projection subject to being uncorrelated to the previously extracted
projections. Such ICA transformations then have the form

X → Z = XCOV(X)−
1

2 Q = XB⊤

where Q is an orthogonal matrix. The matrix B is typically called the unmixing matrix.
For ways to choose the final rotation matrix Q, or more generally for a review of ICA,
see Hyvärinen, Karhunen, and Oja (2001).

• Invariant coordinate selection
The ICS transformation is based upon the use of two different scatter matrices. One
scatter statistic is first used to ‘whiten’ the data, while a second scatter statistic, defined
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differently from the first, is used to find a rotation of the data obtained from a PCA of
the ‘whitened’ data. Specifically, this gives the transformation

X → Z = XS1(X)−
1

2 U⊤

2 = XB⊤,

where U2 is given by the spectral value decomposition of S2(Z1) = U⊤
2 DU2 for Z1 =

XS1(X)−
1

2 . As described later in the paper, this new coordinate system is invariant up
to a sign change under affine transformations of the original data matrix X.

The goal of this paper is to describe how the ICS method, as well as a certain class of ICA
algorithms, can be implemented using the R package ICS. The structure of this paper is as
follows. In the next section, a review of some scatter matrices to be used later within the
paper is first given. Section 3 explains the ICS method in more detail and discusses its various
applications. One such application involves the recovery of the unmixing matrix in the ICA
problem. Section 4 describes the R package ICS, and finally Section 5 concludes the paper
with several examples showing how the ICS method and package can be used in analyzing a
multivariate data set.

2. Scatter matrices

Conceptually, the simplest alternative to the sample mean and sample covariance matrix is
to use a weighted mean and covariance matrix respectively, with the weights dependent on
the original Mahalanobis distances. This gives the location and scatter statistics

T (X) =
ave[u1(ri)xi]

ave[u1(ri)]
and S(X) = ave[u2(ri)(xi − x̄)⊤(xi − x̄)],

where ri = ♣♣xi − x̄♣♣COV(X), and with u1(r) and u2(r) being non-negative weight functions.
Here, we use the general notation

♣♣y♣♣2Γ = yΓ−1y⊤,

which defines a norm on ℜp whenever Γ is a symmetric positive definite matrix of order p.
Since a single outlier can greatly affect the value of all of the Mahalanobis distances, the
weighted mean and covariance statistics can be also highly sensitive to a single outlier.

Many classes of robust location and scatter statistics have been proposed. For our purposes,
we briefly discuss only the multivariate M-estimates. For a detailed overview of the M-
estimates and other robust estimates, we refer the reader to Maronna, Martin, and Yohai
(2006).

The multivariate M-estimates of location and scatter may be viewed as adaptively weighted
means and covariance matrices respectively. More specifically, they can be defined as solutions
to the M estimating equations

T (X) =
ave[u1(ri)xi]

ave[u1(ri)]
, and S(X) = ave[u2(ri)(xi − T (X))⊤(xi − T (X))],

where now ri = ♣♣xi − T (X))♣♣S(X), and again u1(r) and u2(r) are non-negative weight func-
tions. Note that these are implicit equations in (T (X), S(X)) since the weights on the right-
hand side of the equations depend upon them.



Klaus Nordhausen, Hannu Oja, David E. Tyler 5

The multivariate M-estimates of location and scatter were originally derived as a general-
ization of the maximum likelihood estimates for the parameters of an elliptically symmetric
distribution. Hence these maximum likelihood estimates are special cases of the multivariate
M-estimates. Of particular interest here are the maximum likelihood estimates associated
with a p-dimensional elliptical t-distribution on ν degrees of freedom. These maximum like-
lihood estimates correspond to M-estimates with weight functions

u1(r) = u2(r) =
p + ν

r2 + ν
.

An important property of these t M-estimates, for ν ≥ 1, is that they are one of the few
M-estimates which are known to have a unique solution to its M-estimating equations and a
proven convergent algorithm, see Kent and Tyler (1991).

A useful variation of a scatter matrix is a scatter matrix with respect to the origin. We
defined this to be a statistic So(X) which is invariant under sign changes of the individual
observations and equivariant or ‘covariant’ under nonsingular linear transformations. That
is,

So(JXA⊤) = ASo(X)A⊤

for any nonsingular matrix of order p and any sign change matrix J of order n. An example
of a scatter matrix about the origin is the matrix of second moments M2(X) = ave[x⊤

i xi].
Other examples are weighted second moment matrices and M-estimates of scatter about the
origin. These are defined as

So(X) = ave[u2(ri)x
⊤

i xi],

with ri = ♣♣xi♣♣M2(X) for the former and ri = ♣♣xi♣♣So(X) for the latter.

One important application of scatter matrices with respect to the origin is that they can be
used to construct symmetrized scatter matrices. A symmetrized scatter matrix Ss(X) is a
scatter matrix defined by applying a scatter matrix with respect to the origin to pairwise
differences of the data. More specifically, given a scatter functional with respect to the origin
So, a symmetrized scatter matrix is then defined as

Ss(X) = So(Xs),

where Xs is N = n(n − 1)/2 × p with row vectors di,j = xi − xj for i < j. Note that
a location statistic is not needed in defining a symmetrized scatter statistic. As explained
later in Section 3.4, symmetrized scatter matrices play a crucial role when using ICS for
independent components analysis.

Another scatter matrix which plays a role in independent components analysis involves the
4th central moments (Cardoso 1989). This is given by

COV4(X) =
1

p + 2
ave[r2

i (xi − x̄)⊤(xi − x̄)]

where ri = ♣♣xi − x̄♣♣COV(X). This scatter matrix is a special case of a weighted sample
covariance matrix, namely one with weight function u2(r) = r2/(p+2). A curious observation
is that this weight function upweights rather than downweights outliers. The constant 1/(p+2)
is used to make COV4(X) consistent for the covariance matrix under random samples from a
multivariate normal distribution.
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Finally, a popular M estimates of scatter within the area of nonparametric multivariate
statistics is Tyler’s shape matrix (Tyler 1987). For a given location functional T (X), this is
defined as a solution to the implicit equation

S(X) = p ave


(xi − T (X))⊤(xi − T (X))

♣♣xi − T (X)♣♣2
S(X)

]
.

Tyler’s shape matrix about the origin is obtained by simply setting T (X) = 0 in the above
definition, which corresponds to an M estimate of scatter about the origin with weight func-
tion u2(r) = 1/r2. The symmetrized version of Tyler’s shape matrix is known as Dümbgen’s
shape matrix (Dümbgen 1998). It is implicitly defined by

Ss(X) = p avei<j


(xi − xj)⊤(xi − xj)

♣♣xi − xj ♣♣2
Ss(X)

]
.

Tyler’s shape matrix and Dümbgen’s shape matrix are not well defined scatter matrices
since they are defined only up to a constant. That is, if S(X) and Ss(X) satisfy the above
definitions respectively, then so do λS(X) and λSs(X) for any λ > 0. This however is the
only indeterminancy in their definitions. Consequently, they possess the following equivariant
property under affine transformations,

S(XA⊤ + 1⊤

n b) ∝ AS(X)A⊤,

for any nonsingular matrix A of order p and any b ∈ ℜp. For the applications discussed in
this paper this equivariant property is sufficient.

3. Multivariate data analysis using an ICS

3.1. Invariance of ICS

As noted in the introduction, using the sample mean and covariance matrix or some robust
affine equivariate alternatives, say (T (X), S(X)), to ‘whiten’ a multivariate data set yields a
new ‘standardized’ coordinate system in the sense that the ‘new’ data set has uncorrelated
components with respect to S. This new coordinate system, however, is not invariant under
affine transformations of the original data set X since for nonsingular A and b ∈ ℜp, one
obtains

[(XA⊤ + 1⊤

n b) − 1⊤

n T (XA⊤ + 1⊤

n b)]S(XA⊤)−
1

2 = [X − 1⊤

n T (X)][S(X)]−
1

2 U,

with U being an orthogonal matrix depending on X, A and S, and on the particular definition
of the matrix square-root being used. Thus, ‘standardizing’ X does not necessarily give the
same coordinate system as ‘standardizing’ XA⊤ + 1⊤

n b.

Tyler, Critchley, Dümbgen, and Oja (2008) show however that an affine invariant ‘whitening’
of the data can be obtained by introducing a second scatter statistic. They call this transfor-
mation invariant coordinate selection ICS. The definition of ICS as given in the introduction
can be seen as a two step transformation. First the data is ‘standardized’ with respect to
one scatter statistic S1(X) and then a PCA transformation is performed on the ‘standard-
ized’ data using a different scatter statistic S2(X). Note that if one applies the same scatter
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statistic S1(Z) to the ‘standardized’ data, then one simply obtains S1(Z) = Ip, for which a
PCA transformation is meaningless.

An alternative formulation of ICS, which makes some of its properties more transparent, is
as follows. For two different scatter statistics S1(X) and S2(X), let B(X) be the p×p matrix
whose rows corresponds to the eigenvectors of S1(X)−1S2(X) and let D(X) be the diagonal
matrix consisting of the p corresponding eigenvalues. For brevity, denote S1 = S1(X), S2 =
S2(X), B = B(X) and D = D(X), and so

S−1
1 S2B⊤ = B⊤D or S2B⊤ = S1B⊤D

Note that any matrix B satisfying the above definition also jointly diagonalizes both S1 and
S2. This gives

BS1B⊤ = D1 and BS2B⊤ = D2,

with D1 and D2 being diagonal matrices. Moreover, D−1
1 D2 = D. If the roles of S1 and S2

are reversed, then the matrix of eigenvectors B is the unchanged, but D → D−1.

We hereafter use the convention of normalizing the eigenvectors to have length one relative
to the scatter matrix S1, i.e.,

BS1B⊤ = Ip,

and hence D = D2. We also presume the eigenvalues, i.e., the diagonal elements of D, are
ordered. The resulting transformation matrix B corresponds to that given in the introduction.
The matrix B can be made unique by imposing some restrictions like the element in each row
with largest absolute value must be positive.

The transformation defined by the matrix B(X), i.e.,

X → Z = XB(X)⊤

is invariant under nonsingular linear transformations in the following sense. Presuming the
eigenvalues in D(X) are all distinct, it follows that for any nonsingular matrix A

X∗ = XA⊤ → Z∗ = X∗B(X∗)⊤ = (XA⊤)B(XA⊤)⊤ = XB(X)⊤J = ZJ,

for some sign change matrix J . A similar statement can be made in the case of multiple
eigenvalues, see Tyler et al. (2008) for details. Given an affine equivariant location statistic
T (Y ), if either the variable X or the transformed data Z is center by subtracting T (X) or
T (Z) respectively from each of the rows, then the resulting transformation is affine invariant
up to a sign change matrix. Finally, we note that the eigenvalues are also affine invariant.
Specifically,

D(XA⊤ + 1⊤

n b) = D(X).

Thus, given two scatter statistics, one can easily generate an invariant coordinate system.
For the most part, which scatter statistics are best to use is an open problem. Most likely it
depends on the particular application in mind. The following sections show some applications
of using ICS in multivariate data analysis, and points out those situations where certain types
of scatter matrices are needed.

3.2. Descriptive statistics
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In this section, let Z = XB(X)⊤ be the invariant components obtained from ICS based on
the scatter statistics S1(Y ) and S2(Y ). The components of Z are thus standardized with
respect to S1 and uncorrelated with respect to S2, i.e.,

S1(Z) = I and S2(Z) = D,

where D is an ordered diagonal matrix. We hereafter refer to the diagonal elements of D
as generalized kurtosis measures. In the univariate setting, the classical kurtosis measure
can be viewed as a comparison of two different univariate dispersion measures, namely the
square-root of the fourth central moment and the variance. The ratio of any two dispersion
measures can be used to define a generalized univariate kurtosis measure. In the multivariate
setting, one can consider the ‘ratio’ of two different scatter matrices S1(X)−1S2(X). The
maximal invariants under nonsingular linear or under affine transformations can then be
shown to be D, and thus we view D as a multivariate affine invariant generalized kurtosis
measure, again see Tyler et al. (2008) for details. The individual elements of D represent a
generalized kurtosis measure for the corresponding components of Z, with these components
being ordered according to their generalized kurtosis.

Consequently, the two scatters and the ICS transformation along with two different location
statistics (denoted correspondingly as T1 and T2) can be used to describe four of the most
basic features of a data set:

• The location: T1(X)

• The scatter: S1(X)

• Measure of skewness: T2(Z) − T1(Z)

• Kurtosis measures: S2(Z)

The last two measures can even be used to construct tests of multinormality or ellipticity.
The usage of two different location and scatter statistics for such tests is described in more
detail in Kankainen, Taskinen, and Oja (2007).

3.3. Diagnostic plots and dimension reduction

Perhaps the most common type of diagnostic plot for multivariate data is the classical Ma-
halanobis distance plots based upon the sample mean vector and sample covariance matrix.
Such a plot, i.e., a plot of the index i versus the Mahalanobis distance ri = ♣♣xi − x̄♣♣COV(X),
can be useful in detecting outliers in the data. Such plots though are known to suffer from the
masking problem. To alleviate this problem, one can replace the sample mean and covariance
by robust location and scatter statistics respectively, and then generate robust Mahalanobis
distance plots, see e.g., Rousseeuw and van Zomeren (1990). Another type of diagnostic plot,
e.g., used in Rousseeuw and van Driessen (1999) to help uncover outliers or groups of outliers,
is a plot of the classical Mahalanobis distances versus the robust Mahalanobis distances.

One feature of Mahalanobis distance plots is that they are invariant under affine transforma-
tions of the data. Given two location and scatter statistics, one can plot the corresponding
Mahalanobis distances against each other. However, a more complete affine invariant view
of the data is given by the pairwise plots of the invariant coordinates Z obtained from ICS.
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The ordering of the components of Z is with respect to their generalized kurtosis measures.
Moreover, if we take

κ(b) = bS2b⊤/bS1b⊤

as a generalized kurtosis measure for the univariate linear combination Xb⊤, then κ(b) achieves
its maximum at the first component of Z and its minimum at the last component of Z. The
other components of Z successively maximize or minimize κ(b) subject to being ‘uncorrelated’
relative to S1 or S2, with the previously extracted components, e.g., b1S1b⊤

2 = b1S2b⊤
2 = 0.

Extreme kurtosis measures can indicate non-normality of coordinates and hence indicate
coordinates which may be of special interest for further examination. Thus, focusing on the
‘extreme’ ICS components yields a natural method for dimension reduction. This criterion
for dimension reduction is demonstrated in Section 5.2.

The ICS transformation is also known to have other important properties which justifies
its use as a data analytic method. For example, if the data arise as a location mixture
of two multivariate normal distributions, or more general two possibly different elliptical
distributions, with proportional population scatter matrices, then Fisher’s linear discriminant
function for discrimination between the two components of the mixture corresponds to one
of the two extreme ICS components even though the classification of the data points are not
known. For more details and generalizations to mixtures with more than two components,
we again refer the reader to Tyler et al. (2008). Another important property of ICS is its
relationship to independent components analysis, which is discussed in the next section.

Special cases of the ICS transformation have been proposed as diagnostic methods for detect-
ing outliers or groups of outliers by Caussinus and Ruiz-Gazen (1994) and more recently by
Critchley, Pires, and Amado (2008). The former consider the case when S1 is taken to be
the sample covariance matrix and S2 is taken to be a weighted sample covariance matrix as
defined in Section 2. They refer to their method as generalized principal components analysis
(GPCA). Critchley et al. (2008) also consider the case when S1 is taken to be the sample
covariance matrix. For S2, they use a weighted covariance matrix based upon the weight
function u2(ri) = 1/r2

i , and they refer to their method as principal axis analysis (PAA). Since
these are special cases of ICS, the R package ICS can be used to implement GPCA or PAA.

3.4. Independent components analysis

So far no assumptions have been made as to how the data arises, other than the reference
to mixture models in the previous section. In this section, we now assume the observations
represent a random sample from a multivariate population, with the population representing
a nonsingular linear transformation of a vector of independent components. More specifically,
the observations

xi = ziA
⊤, i = 1, . . . , n

where the mixing matrix A is a full rank p × p matrix A, and zi is a p-variate latent vector
with independent components. This is the independent components (IC) model in its simplest
form. The aim of independent components analysis (ICA) is to find an unmixing matrix B
so that xiB

⊤ has independent components. Note that this model is not well defined since for
any diagonal matrices D and permutation matrices P

X = Z∗A∗⊤ = (ZPD)(D−1P −1A⊤).
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Therefore for any unmixing matrix B, B∗ = DPB is also a valid unmixing matrix. For a
recent overview about ICA see Hyvärinen et al. (2001).

Oja, Sirkiä, and Eriksson (2006) show, under fairly general conditions, that the transformation
matrix B defined in Section 3.1 is also an unmixing matrix for the IC model. One condition is
that the population values of the generalized kurtosis values for the independent components
of zi have different values. Another condition is that the population version of the scatter
matrices S1 and S2 posses the co-called ‘independence property’. This independence property
requires that if zi has independent components, then the population version of S(Z) is a
diagonal matrix. In general, scatter matrices do not necessarily possess this property, but
symmetrized scatter matrices do.

The regular covariance matrix COV and the matrix of 4th moments COV4 also possess
the aforementioned independence property since they can be represented as symmetrized
scatter matrices. Consequently, the FOBI algorithm (Cardoso 1989), can be seen as a special
case of the ICS based algorithm with S1 = COV and S2 = COV4. For this case, it turns
out that that the generalized kurtosis measure Djj can be transformed into an estimate
of the classical kurtosis measure for the jth independent components, specifically by taking
κ̂j = (p + 2)(Djj − 1). Simulations given in Nordhausen, Oja, and Ollila (2008a) indicate the
performance of the algorithm is better when more robust scatter functionals are used.

3.5. Multivariate nonparametrics

Multivariate extensions of univariate signs, ranks and the median can be easily obtained by
applying signs, ranks and medians to the individual components of a multivariate dataset.
Such componentwise or marginal signs, ranks and median, as well as spatial signs, spatial
ranks and spatial median, are not invariant or equivariant under affine transformations of the
data. This lack of invariance is partially responsible for the lack of power or efficiency when
the data are highly correlated, see e.g. Bickel (1965) and Puri and Sen (1971).

To construct invariant tests and estimates using such multivariate signs and ranks, Chakraborty
and Chaudhuri (1996), Chakraborty and Chaudhuri (1998) and Chakraborty, Chaudhuri,
and Oja (1998) introduced the ‘transformation-retransformation’ (TR) technique. The TR
method first linearly transforms the data to a new invariant coordinate system, and then the
marginal tests or estimates are constructed on the transformed coordinates. Finally, estimates
can then be retransformed to the original coordinate system. The transformation used in the
TR technique in one sample problems is based on the selection of p data points. The data
is then linearly transformed so that these p data points are mapped into the Euclidean basis
vector. A major difficulty with the TR procedure involves the selection of the ‘best’ p data
vectors.

In this section we discuss how the ICS transformation can be used as a simpler alternative
in the construction of invariant componentwise tests and estimates. We concentrate here on
the signs, ranks, and medians for the one sample problem. For applications of ICS in the two
sample problem see Nordhausen, Oja, and Tyler (2006).

Suppose X arises as a random sample from a p-variate continuous distribution. Further,
assume its distribution is symmetric about some unknown location parameter µ. In other
words, the distributions of (xi − µ) and −(xi − µ) are assumed to be the same. Consider
first the problem of testing the null hypothesis H0 : µ = 0. To apply the ICS method to
this testing problem, we require now that the two scatter matrices be scatter matrices with
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respect to the origin, as defined in Section 2, and to be invariant under permutations of the
data points. Hence, for k = 1, 2, we require

Sk(PJXA⊤) = ASk(X)A⊤

for any nonsingular A, permutation P and sign-change J , which then implies

B(PJX) = B(X).

Under the null hypothesis, the rows of X represent a random sample from a distribution
symmetric about the origin. Hence, the distribution of X and PJX are the same for any
permutation matrix P and any sign-change matrix J . Consequently, for such P and J ,

Z(X) = XB(X)⊤ ∼d PJZ(X).

Note that the rows of Z, zi for i = i, . . . , n, do not represent a random sample since the
transformation matrix B(X) is data dependent. Nevertheless, under the null hypothesis, the
n observations in Z have an exchangeable and symmetric distribution.

Consider now the jth component or column of Z which corresponds to (z1j , . . . , znj)⊤. It
then readily follows that under the null hypothesis

Uj =
n∑

i=1

I(zij > 0) ∼d Bin(n, 0.5)

for each j = 1, . . . , p. Hence, the sign test statistic Uj is distribution-free and invariant under
any nonsingular linear transformation of the data. Likewise, if we denote R+

ij to be the rank
of ♣zij ♣ among ♣z1j ♣, . . . , ♣znj ♣, then the Wilcoxon signed-rank statistic

Wj =
n∑

i=1

sgn(zij)R+
ij

is also distribution-free under the null hypothesis, specifically it has the distribution of the uni-
variate Wilcoxon sign-rank statistic, and is similarly invariant. Note that these test statistics
are distribution-free under any symmetric model and not only under elliptically symmetric
models. Of course, other score functions can be used in an analogous manner.

Unfortunately, U1, . . . , Up as well as W1, . . . , Wp are not mutually independent and their
corresponding joint distributions are not distribution-free under the null hypothesis. Exact
finite sample distribution-free tests can be constructed though if one uses only one of the
extreme ICS, specifically U1 or Up for the sign test or W1 or Wp for the sign-rank test.
Which extreme should be used depends on the choice of the scatter statistics used in the
ICS transformation. Alternatively, conservative finite sample distribution-free tests can be
constructed if one uses each of the test statistics, that is either U1, . . . , Up or W1, . . . , Wp,
together with Bonferonni’s method. Another alternative is to combine the individual test
statistics, either the two extremes or all p, to form approximate χ2 statistics as described in
Puri and Sen (1971).

Nordhausen et al. (2006) compare the efficiencies of the following three strategies: (i) using
only one of the extreme components, (ii) using an approximate χ2 statistic based on the first
and last component, and (iii) using an approximate χ2 statistic based on all the components.
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Although the exact as well as the asymptotic distribution of (ii) and (iii) are still open
questions, the efficiency comparisons showed that a χ2

p approximation works well for strategy
(iii). Furthermore, strategy (iii) using the Wilcoxon signed-rank statistics appears to be the
best test statistic among these, and is a serious competitor to Hotelling’s T 2 test even at
the multivariate normal model. These tests using signs and ranks in an ICS are not only
distribution-free under elliptically symmetric models but rather under any symmetric model.

To obtain an affine equivariant location estimate in this setting, let µ̂ be either the vector of
marginal medians or the vector or marginal Hodges-Lehmann estimators. These, by them-
selves, are not a true multivariate location statistics since they are not affine equivariant.
However, they can be applied to the ICS transformed coordinates (where the scatter matrices
now are not taken with respect to the origin), and then transformed back to the original
coordinates. This gives

µ̃(X) = µ̂(XB⊤)(B−1)⊤,

where B = B(X) is the ICS transformation matrix. The resulting statistic µ̃(X) then cor-
responds to an affine equivariant multivariate median, or respectively Hodges-Lehmann es-
timator. Applying this method with any other univariate location statistics yields an affine
equivariant multivariate version of the statistic. Note that if the univariate statistic is the
sample mean, then the resulting multivariate statistic is the usual multivariate sample mean.

4. ICS and R

The package ICS is freely available from the Comprehensive R Archive Network at http:

//CRAN.R-project.org/package=ICS and comes under the GNU General Public Licence
(GPL) 2.0 or higher licence.

The main function of the package ICS is the function ics. This function computes for a given
numeric data frame or matrix the unmixing matrix, the (generalized) kurtosis values and the
invariant coordinates. The function is written in a flexible way so that the user can choose for
their computations any two scatter functions desired. The user can either submit the name
of two arbitrary functions that return a scatter matrix or submit two scatter matrices already
computed in advance to the arguments S1 and S2.

In principle after deciding on two scatter matrices which scatter matrix is chosen as S1 and
which as S2 makes no difference. The effect of relabeling S1 and S2 is that the coordinate
order is reversed and that the kurtosis values are inverted. The later is however only the case
when S1 and S2 are both actual scatter matrices and none of them is a shape matrix. If one
or both of S1 and S2 are shape matrices, the product of the kurtosis after reversing one of
the vectors is no longer 1 anymore but only constant since in this case, the kurtosis measures
are only relative.

To avoid arbitrary scales for the kurtosis values and in order to make them also more compa-
rable, the logical argument stdKurt can be used to decide if one wants the absolute values of
the kurtosis measures or one rather wants them standardized in such a way, that the product
of the kurtosis elements is 1.

The best choice for S1 and S2 for a given data set is still an open question, in most cases
the choice seem not to have a very big effect, in some cases however as shown for example
in Tyler et al. (2008) it can have a substantial effect. Also the choice can depend heavily on
the application. When, for example, the estimation of the mixing matrix in an independent

http://CRAN.R-project.org/package=ICS
http://CRAN.R-project.org/package=ICS
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components analysis is the goal, then the simulation study given in Nordhausen et al. (2008a)
shows that robust combinations always dominate non-robust combinations, even when there
are no outliers present. Whereas in Nordhausen, Oja, and Paindaveine (2008b) the com-
bination of scatter functionals had no impact on the efficiency of a test for location in the
symmetric independent component model, where ICS was used to recover the independent
components. In general, given the current knowledge of ICS, we recommend trying several
combinations of scatter matrices for S1 and S2. Here, R offers many possibilities. The package
ICS itself offers, for example, the matrix of fourth moments (cov4), the covariance matrix
with respect to the origin (covOrigin), a one-step Tyler shape matrix (covAxis) or an M es-
timator based on the t distribution (tM). Other packages offer still more scatter matrices. The
following list names a few functions from different packages. For details about the functions
see the corresponding help pages.

• covRobust (Wang, Raftery, and Fraley 2003): cov.nnve.

• ICSNP (Nordhausen, Sirkiä, Oja, and Tyler 2007): tyler.shape, duembgen.shape,
HR.Mest, HP1.shape.

• MASS (Venables and Ripley 2002): cov.rob, cov.trob.

• robustbase (Mächler, Rousseeuw, Croux, Todorov, Ruckstuhl, and Salibian-Barrera
2008): covMcd, covOGK.

• rrcov (Todorov 2008): covMcd, covMest, covOgk.

Naturally the user should ascertain that the scatter matrices he uses have all the different
properties like affine equivariance or independence property and so on, needed for the appli-
cation at hand. The application has also an impact on the preferred form of the unmixing
matrix B, which as mentioned above is not unique. The function ics offers two options via
the argument stdB. Setting this argument to Z standardizes the unmixing matrix B in such
a way, that all invariant coordinates are right skewed. The criterion used to achieve this is to
use the sign between the mean and median of each component. Whereas the option stdB =

"B" standardizes the ummixing matrix such that each row has norm 1 and in each row the
element with the largest absolute value has a positive sign. The later method is more natural
in an independent component model framework.

A call to the function ics creates an object of the S4 class ics and the package offers
several functions to work with such objects. The two most basic ones are the functions
show (equivalent to print) for a minimal output and summary for a more detailed output.
The generic function plot for an ics object returns a scatter plot matrix which shows by
default when p > 7 only those components with the three smallest kurtosis measures and
the three largest kurtosis measures, since often the main interest is on the components with
‘extreme’ kurtosis values. However using the index argument any component can be included
or excluded in the scatterplot. Another plotting function for an ics object is the generic
screeplot.ics which works similar as R’s function screeplot for principal components with
the difference, that it plots the kurtosis values against the number of the component. The
function fitted returns the original data but it can also be used in the ICA framework when
some components may be suppressed. The invariant coordinates or independent components
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can be obtained by calling ics.components. The transformation matrix or unmixing matrix
B can be extracted from an ics object by using coef.

Not mentioned so far is, that the package offers also two tests for multinormality. The function
mvnorm.skew.test is based on the difference between the mean vector and the vector of third
moments, implemented as mean3. And in the same spirit compares mvnorm.kur.test the
regular covariance matrix and covariance matrix of fourth moments.

For further details on the functions see their help pages and the references therein.

5. Examples for multivariate data analysis using an ICS

In this section we will present how to use ICS for the different purposes previously discussed.
For the examples we use for the output the option options(digits = 4) in R Under develop-
ment (unstable).4 (R Development Core Team 2008) together with the packages ICS 1.4-2, IC-

SNP 1.1-2 (Nordhausen et al. 2007), MASS 7.3-65 (Venables and Ripley 2002), mvtnorm 1.3-2
(Genz, Bretz, and Hothorn 2008), pixmap 0.4-13 (Bivand, Leisch, and Mächler 2008) and ro-

bustbase 0.99-4-1 (Mächler et al. 2008). Random seeds are provided for reproducibility of all
examples.

5.1. Descriptive statistics

The first example will show how to obtain the four summary statistics from Section 3.2
using the the regular covariance matrix, the matrix of fourth moments, the mean vector and
the location estimated based on third moments. At the beginning we will load the needed
packages, create a random sample from a multivariate normal distribution, and create our
ICS. Note that due to our interest in the kurtosis the absolute kurtosis values are needed.

R> library("ICS")

R> library("mvtnorm")

R> set.seed(2)

R> X <- rmvnorm(1000, c(0, 0, 1))

R> ics.X <- ics(X, stdKurt = FALSE)

R> Z <- ics.components(ics.X)

The first summary statistic is the vector of means:

R> colMeans(X)

[1] 0.05912 0.08149 1.00860

The second summary statistic is the covariance matrix:

R> cov(X)

[,1] [,2] [,3]

[1,] 1.013196 0.002968 0.01659

[2,] 0.002968 1.005260 0.04652

[3,] 0.016588 0.046519 1.03616
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The skewness measures are:

R> mean3(Z) - colMeans(Z)

IC.1 IC.2 IC.3

0.07621 0.01548 0.01568

Finally, as noted in Section 3.4, for this special case of ICS we can estimate the excess kurtosis
values from the generalized kurtosis measures of the ics object as follows:

R> (dim(X)[2] + 2) * (ics.X@gKurt - 1)

[1] 0.30674 -0.04291 -0.32227

5.2. Diagnostic plots and dimension reduction

Exploratory data analysis is often used to get some understanding of the data at hand, with
one important aspect being the possible occurrence of atypical observations. Sometimes the
identification of these atypical observations is the goal of the data analysis, more often however
they must be identified and dealt with in order to assure the validity of inferential methods.
Most classical methods are not very robust when the multinormality assumption is violated,
and in particular when outliers are present.

Mahalanobis distance plots are commonly used to identify outliers. As we will demonstrate
now, outliers can also be identified using ICS. The example we use here is the modified wood
gravity data set which is for example part of the robustbase package as the data set wood.
This data set consists of 20 observations for six variables, with a few of the observations being
known outliers inserted into the data. This is a common data set used to demonstrate the
need for robust scatter matrices, and in particular high breakdown point scatter matrices, to
identify the outliers.

To demonstrate this idea, we first compute the Mahalanobis distances based on the sample
mean vector and the sample covariance matrix and then one based on the minimum volume
ellipsoid (MVE) estimate as implemented by cov.rob in the MASS package. Points which

have distances larger than
√

χ2
p;0.975 are usually viewed as potential outliers, and so we will

label such points accordingly.

R> library("MASS")

R> library("ICS")

R> data("wood", package = "robustbase")

R> maha1.wood <- sqrt(mahalanobis(wood, colMeans(wood), cov(wood)))

R> set.seed(1)

R> covmve.wood <- cov.rob(wood)

R> maha2.wood <- sqrt(mahalanobis(wood, covmve.wood$center, covmve.wood$cov))

R> max.maha.wood <- max(c(maha1.wood, maha2.wood))

R> out.id <- ifelse(maha2.wood <= sqrt(qchisq(0.975, 6)), 0, 1)
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Figure 1: Mahalanobis distance plots for the wood data set. The red points are according to
the robust Mahalanobis distances outliers.

It is worth noting that cov.rob in the MASS package does not actually give the raw MVE
but rather a reweigthed scatter matrix which uses the location and scatter from the MVE as
the initial statistics.

We next plot the distances against the observation number, include a horizontal line at the
cutoff value and color the points that exceed the cutoff according to the robust distances.

R> par(mfrow = c(1, 2), las = 1)

R> plot(maha1.wood, xlab = "index" ,ylab = "Mahalanobis distance",

+ ylim = c(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1)

R> abline(h = sqrt(qchisq(0.975, 6)))

R> plot(maha2.wood, xlab = "index", ylab = "robust Mahalanobis distance",

+ ylim = c(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1)

R> abline(h = sqrt(qchisq(0.975, 6)))

R> par(mfrow = c(1, 1))

As can be seen from Figure 1, the classical Mahalanobis distances do not reveal any outlier
whereas the robust distances classify 4 points as clear outliers and one borderline case.

The difference between the two Mahalanobis distances can also be observed in a distance
versus distance plot, which ideally should have all points on the bisector. The results of the
following code are given in Figure 2.

R> plot(maha1.wood, maha2.wood, xlab = "regular Mahalanobis distance",

+ ylab = "robust Mahalanobis distance", ylim = c(0, max.maha.wood),
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Figure 2: Distance distance plots for the wood data set. The red points are according to the
robust Mahalanobis distances outliers.

+ xlim = c(0, max.maha.wood), col = out.id + 1, pch = 15 * out.id + 1,

+ las = 1)

R> abline(0, 1)

For outlier identification, it is usually necessary to use Mahalanobis distances based on robust
location and scatter statistics. Although, we still advise using robust scatter statistics for
ICS, identifying atypical observations using ICS tends to be less dependent on the robustness
properties of the scatter matrices being used. As an example, we fit here three different ICS
systems based on three different combinations of scatter matrices for the wood data set, and
observe that the choice of S1 and S2 does not seem to greatly affect the results.

R> library("ICSNP")

R> my.HR.Mest <- function(X,...) HR.Mest(X,...)$scatter

R> ics.default.wood <- ics(wood)

R> ics.2.wood <- ics(wood, tM(wood)$V, tM(wood, 2)$V)

R> ics.3.wood <- ics(wood, my.HR.Mest, HP1.shape)

R> par(mfrow=c(1, 3), las = 1, mar = c(5, 4, 1, 1) + 0.1)

R> plot(ics.components(ics.default.wood)[,6], xlab = "index", ylab = "IC 6",

+ sub = "ICS using cov and cov4", col = out.id + 1, pch = 15 * out.id + 1)
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Figure 3: The last invariant coordinate from three different ICS’s. The red points are accord-
ing to the robust Mahalanobis distances outliers.

R> plot(ics.components(ics.2.wood)[,6], xlab = "index", ylab = "IC 6",

+ sub = "ICS using tM(,1) and tM(,2)", col = out.id + 1,

+ pch = 15 * out.id + 1)

R> plot(ics.components(ics.3.wood)[,6], xlab = "index", ylab = "IC 6",

+ sub = "ICS using HR.Mest and HP1.shape", col = out.id + 1,

+ pch = 15 * out.id + 1)

R> par(mfrow = c(1, 1), las = 0)

From Figure 3, it can be noted that all three plots clearly display the four extreme points,
even though the three pairs of scatter matrices are quite different. The first ICS uses two
highly nonrobust scatter matrices, namely they have unbounded influence functions and zero
breakdown points. The other two ICS have bounded influence functions, non-zero but not
necessarily high breakdown points. The second ICS system presumes first moments, whereas
the third does not presume any moments.

The last example also demonstrates the ease of use for the ics function. One can submit
just two function names when the functions return only the scatter estimates, one can write
without difficulties a wrapper around functions that return more than a scatter matrix, as
done was done here for HR.Mest, or one can submit directly scatter matrices computed in
advance, such as (tM(wood)$V and tM(wood, 2)$V).

In practice, one often encounters very high dimensional data sets, and so a common practice
nowadays is to use PCA or other methods as a dimension reduction technique. The invariant
coordinates, i.e., ICS, can also be used for this purpose. We will demonstrate this on Fisher’s
Iris data set (Fisher 1936).

We start by loading the needed packages and call for the 4 explanatory variables in the data
set ics.

R> library("ICS")

R> library("MASS")

R> data("iris")
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Figure 4: Scatter plot matrix for invariant coordinates of the Iris data set.

R> iris.ics <- ics(iris[,1:4])

R> plot(iris.ics, col = as.numeric(iris[,5]))

The invariant coordinates are then plotted with different colors for the different species in
Figure 4. As can be seen in this figure, the coordinate with the lowest generalized kurtosis
separates the three species very well, even though the species identification is not being
taken into account in this analysis. Heuristically spoken one can say that the last coordinate
corresponds to Fisher’s linear discriminant subspace.

Since both ICS and PCA can serve as dimension reduction methods which helps identify
clusters, we also plot for comparison purposes the principal component variables for the Iris
data.

R> pairs(princomp(iris[,1:4])$scores, col = as.numeric(iris[,5]))
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Figure 5: Scatter plot matrix for principal components of the Iris data set.

By comparing Figures 4 and 5, we note that both plots clearly separates one species from the
other two, but the PCA plot is less successful than the ICS plot at distinguishing between
the other two species.

Finally, we look at a so called discriminate coordinate plot, which unlike the two previous
plots takes into account the group memberships. Such a plot can be done using ics by
specifying as S1 the regular covariance matrix and as S2 the within group matrix, which we
will call cov.within.

R> p <- dim(iris[, 1:4])[2]

R> n <- dim(iris[, 1:4])[1]

R> ngroup <- aggregate(iris$Species, list(iris$Species), length)$x

R> colMeans.iris <- colMeans(iris[, 1:4])

R> colMeans.iris.groups <- by(iris[, 1:4], iris$Species, colMeans)
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Figure 6: Discriminate coordinate plot for the Iris data set.

R> colMeans.iris.diffs <- sapply(colMeans.iris.groups,"-",

+ colMeans.iris, simplify = FALSE)

R> matrix.iris <- sapply(colMeans.iris.diffs, tcrossprod, simplify = FALSE)

R> freq <- rep(ngroup, each = p^2)

R> matrix.iris <- array(unlist(matrix.iris),

+ dim = c(p, p, nlevels(iris$Species)))

R> cov.within <- rowSums(matrix.iris * freq, dims = 2)/n

R> ics.iris.disc <- ics(iris[,1:4], cov(iris[,1:4]), cov.within)

R> plot(ics.iris.disc, col = as.numeric(iris$Species))

As can be seen from Figures 4 and 6, the fourth component of ICS a and the first component
of the discriminate analysis are similar. As noted in Section 3.3, this is what is theoretically
anticipated. We continue by taking a closer look at the 4th invariant coordinate of iris.ics.
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Figure 7: Kernel density estimate of the 4th invariant coordinate of the Iris data set with
rugs for the different species. Bandwidth = 0.15.

Looking at a kernel density estimate of that component, with rugs representing the different
species, confirms that this component serves very well for discriminating among the three
species (see Figure 7).

R> iris.z <- ics.components(iris.ics)

R> plot(density(iris.z[,4], bw = 0.15), las = 1,

+ main = "Kernel Density of 4th component")

R> rug(iris.z[1:50, 4], col = 1)

R> rug(iris.z[51:100, 4], col = 2)

R> rug(iris.z[101:150, 4], col = 3, ticksize = -0.03)

This result agrees also with Bugrien (2005) who used ICA components for classification for
the same data.

To demonstrate this we will randomly select 80% of the observations of the data set as the
training set and use first the regular data to create a linear discrimination rule to classify the
remaining 20% of the observations and afterwards we will use the training set to create an
invariant coordinate system and use only the 4th component to create the discrimination rule
and classify the test sample using this rule.

R> set.seed(4321)
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R> train <- sample(1:150, 120)

R> lda.iris <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length +

+ Petal.Width, prior = c(1, 1, 1)/3, data = iris, subset = train)

R> table(iris[-train, 5], predict(lda.iris, iris[-train, ])$class)

setosa versicolor virginica

setosa 8 0 0

versicolor 0 10 1

virginica 0 1 10

R> ics.iris <- ics(as.matrix(iris[train, 1:4]))

R> iris.comp4 <- (ics.components(ics.iris))[,4]

R> lda.ics.iris <- lda(iris$Species[train] ~ iris.comp4, prior = c(1, 1, 1)/3)

R> iris.comp4.pred <- (as.matrix(iris[-train, 1:4]) %*% t(coef(ics.iris)))[,4]

R> table(iris[-train, 5], predict( lda.ics.iris,

+ data.frame(iris.comp4 = iris.comp4.pred))$class)

setosa versicolor virginica

setosa 8 0 0

versicolor 0 11 0

virginica 0 0 11

As the two tables show, both methods classify the species pretty well, however using an ICS
we were able to reduce the number of explanatory variables from four to one.

In our analysis of the Iris data, the number of components considered for further analysis has
been based only on graphical arguments. The values of the generalized kurtosis parameters
can also be used to help decide which components may be of further interest. Within the
framework of principal axis analysis (PAA) clear guidelines have been proposed. As pointed
out in Section 3.3, PAA is a special case of ICS. Consequently, we demonstrate with the Iris
data how PAA can be implemented using the function ics.

ICS yields PAA by calling ics using cov and covAxis for the centered data and requires the
absolute values of the generalized kurtosis measures. Which in this case correspond to what
is called the empirical alignment values in PAA.

R> iris.centered <- sweep(iris[,1:4], 2, colMeans(iris[,1:4]), "-")

R> iris.paa <- ics(iris.centered, cov, covAxis, stdKurt = FALSE)

In PAA, the generalized kurtosis measures are referred to as the empirical alignment values,
which we now extract. The mean of the empirical alignment values always equals one.

R> emp.align <- iris.paa@gKurt

R> mean(emp.align)

[1] 1

R> emp.align
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Figure 8: Screeplot for iris.paa. Components that exceed the vertical line are of interest.

[1] 1.2336 1.0168 0.9312 0.8184

The PAA guidelines given in Critchley et al. (2008) for deciding which components deserve to
be considered for further analysis are those which have an empirical alignment greater than
one. This can be visualized by using a screeplot and checking which components are indeed
larger than one (see Figure 8).

R> screeplot(iris.paa, las = 1)

R> abline(h = 1)

So, in this example, we note that the first component is of clear interest whereas the second
component may be of boarderline interest.

5.3. Independent components analysis

Independent components analysis has many applications as, for example, in signal processing
or image separation. We will demonstrate here how the function ics can be used to restore
three images which have been mixed by a random mixing matrix. The three images, which
are displayed in the first row of Figure 9, are part of the package ICS. Each of them is on a
greyscale and has 130 × 130 pixels. The figures are loaded as follows:

R> library("ICS")

R> library("pixmap")
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R> fig1 <- read.pnm(system.file("pictures/cat.pgm", package = "ICS")[1])

R> fig2 <- read.pnm(system.file("pictures/road.pgm", package ="ICS")[1])

R> fig3 <- read.pnm(system.file("pictures/sheep.pgm", package = "ICS")[1])

For our analysis we have to vectorize the pixel matrices and combine them to form a data
set.

R> p <- dim(fig1@grey)[2]

R> X <- cbind(as.vector(fig1@grey), as.vector(fig2@grey), as.vector(fig3@grey))

Next, we create a 3 × 3 mixing matrix A (the random seed is here set to ensure a proper
mixing of the three pictures), mix the three pictures and use the FOBI algorithm via ics to
recover the pictures.

R> set.seed(4321)

R> A <- matrix(rnorm(9), ncol = 3)

R> X.mixed <- X %*% t(A)

R> ICA.fig <- ics(X.mixed, stdB="B")

For a good comparison we plot into one figure in the first row the three original pictures, in
the second row the three mixed pictures, and in the last row the recovered images.

R> par(mfrow = c(3, 3), omi = rep(0.1, 4), mai = rep(0.1, 4))

R> plot(fig1)

R> plot(fig2)

R> plot(fig3)

R> plot(pixmapGrey(X.mixed[,1], ncol = p))

R> plot(pixmapGrey(X.mixed[,2], ncol = p))

R> plot(pixmapGrey(X.mixed[,3], ncol = p))

R> plot(pixmapGrey(ics.components(ICA.fig)[,1], ncol = p))

R> plot(pixmapGrey(ics.components(ICA.fig)[,2], ncol = p))

R> plot(pixmapGrey(ics.components(ICA.fig)[,3], ncol = p))

As Figure 9 shows, we are able to recover the three images quite well. The new order of the
images is related to their generalized kurtosis measures. Also, the cat is now a negative, since
the signs of the components are not fixed. However the positive version of the cat could be
easily obtained by multiplying the corresponding component by -1 before the plotting.

5.4. Multivariate nonparametrics

In this section, we demonstrate via examples, the use of an invariant coordinate system for
estimation and testing problems. For the estimation example, we choose the componentwise
Hodges-Lehmann estimator (Hettmansperger and McKean 1998). For the testing example,
we use the one sample location test using marginal normal scores (Puri and Sen 1971).

We start the demo with loading the three packages needed.

R> library("ICS")

R> library("mvtnorm")

R> library("ICSNP")
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Figure 9: ICA for three pictures. First row are the original pictures, second row the mixed
pictures and the last row the by ICA recovered pictures.

Now we will create a simulated data matrix X of 150 samples coming form a N3((1 2 −1), I)
distribution, a 3 × 3 transformation matrix A and a location shift vector b = (1 1 1). The
transformed data will be denoted Xtrans. Also needed is the function HL.estimator in order
to extract the Hodges-Lehmann estimator from the function wilcox.test.

R> set.seed(2000)

R> X <- rmvnorm(150, c(1, 2,-1))

R> A <- matrix(rnorm(9), ncol = 3)

R> b <- c(1, 1, 1)

R> X.trans <- sweep(X %*% t(A), 1, b, "+")

R> HL.estimator <- function(x){

+ wilcox.test(x, exact = TRUE, conf.int = TRUE)$estimate}
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The results when applying then the Hodges-Lehmann estimator on X and transforming the
estimate using A and b and applying the estimator directly on Xtrans differ as the following
lines show.

R> HLE.X <- apply(X, 2, HL.estimator)

R> as.vector(HLE.X %*% t(A) + b)

[1] 4.3539 -0.2493 -2.0881

R> apply(X.trans, 2, HL.estimator)

[1] 4.3406 -0.2163 -2.0622

since the Hodges-Lehmann estimator is not affine equivariant.

This can be avoided as explained in Section 3.5 by using an ICS. We therefore use the function
ics and choose as S1 the regular covariance matrix and as S2 Tyler’s shape matrix. First we
will apply it only on X, estimate using the obtained coordinates the Hodges-Lehmann esti-
mate and transform the estimate back into the original coordinates using the inverse of the
transformation matrix B−1, this estimate is denoted as HL.ics.X. Repeating the same pro-
cedure on the transformed data XA⊤ we can see that the corresponding estimate HL.ics.AX

equals the transformed estimate of HL.ics.X.

R> ics.X <- ics(X, S1 = cov, S2 = tyler.shape)

R> HL.ics.Z1 <- apply(ics.components(ics.X), 2, HL.estimator)

R> HL.ics.X <- as.vector(HL.ics.Z1 %*% t(solve(coef(ics.X))))

R> ics.X.trans <- ics(X.trans, S1 = cov, S2 = tyler.shape)

R> HL.ics.Z2 <- apply(ics.components(ics.X.trans), 2, HL.estimator)

R> HL.ics.X.trans <- as.vector(HL.ics.Z2 %*% t(solve(coef(ics.X.trans))))

R> as.vector(HL.ics.X %*% t(A) +b)

[1] 4.3415 -0.2195 -2.0283

R> HL.ics.X.trans

[1] 4.3415 -0.2195 -2.0283

For the testing example we first generate a random sample of size 60 coming from a 4-variate
t6 distribution having mean (0 0 0 0.48). The 4 × 4 transformation matrix in this context is
called A2.

R> set.seed(1)

R> Y <- rmvt(60, diag(4), df = 6) + matrix(rep(c(0, 0.48), c(3*60, 60)),

+ ncol = 4)

R> A2 <- matrix(rnorm(16), ncol = 4)

We test the null hypothesis that the sample has the origin as its location on the original data
Y first, and then for the transformed data Y A2⊤. For invariant tests, the decisions are the
same.
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R> rank.ctest(Y, scores = "normal")

Marginal One Sample Normal Scores Test

data: Y

T = 12, df = 4, p-value = 0.02

alternative hypothesis: true location is not equal to c(0,0,0,0)

R> rank.ctest((Y %*% t(A2)), scores = "normal")

Marginal One Sample Normal Scores Test

data: (Y %*% t(A2))

T = 8.9, df = 4, p-value = 0.06

alternative hypothesis: true location is not equal to c(0,0,0,0)

As expected the decisions differ, they differ even that much, that assuming an α-level of 0.05
we would once reject and once fail to reject the null hypothesis.

Again, using an ICS avoids this problem. However, when testing a location parameter we
have a hypothesis for it which should also be used in the computation of the scatter matrices.
Therefore when creating our ICS we use scatter matrices with respect to the origin.

R> Z.Y <- as.matrix(ics.components(ics(Y,

+ S1 = covOrigin, S2 = cov4, S2args = list(location = "Origin"))))

R> rank.ctest(Z.Y, scores = "normal")

Marginal One Sample Normal Scores Test

data: Z.Y

T = 12, df = 4, p-value = 0.02

alternative hypothesis: true location is not equal to c(0,0,0,0)

R> Z.Y.trans <- as.matrix(ics.components(ics(Y %*% t(A2),

+ S1 = covOrigin, S2 = cov4, S2args = list(location = "Origin"))))

R> rank.ctest(Z.Y.trans , scores = "normal")

Marginal One Sample Normal Scores Test

data: Z.Y.trans

T = 12, df = 4, p-value = 0.02

alternative hypothesis: true location is not equal to c(0,0,0,0)
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