ML Strategies with PortfolioTesteR (Advanced Getting Started)

% % %

Why ML in PortfolioTesteR

PortfolioTesteR lets you test ML-based stock selection with the same workflow you already know:

  1. Prepare lagged, leakage-safe features + future labels
  2. Fit -> Predict on a rolling IS/OOS schedule
  3. Transform -> Select -> Weight the scores
  4. Backtest and inspect diagnostics

All examples use the bundled weekly/daily datasets; no internet is required.

suppressPackageStartupMessages(library(PortfolioTesteR))
suppressPackageStartupMessages(library(data.table))

# Bundled sample data
data(sample_prices_weekly)
data(sample_prices_daily)

# Optional peek
head(sample_prices_weekly[, 1:6])
#> Key: <Date>
#>          Date     AAPL    AMZN       BA      BAC      CAT
#>        <Date>    <num>   <num>    <num>    <num>    <num>
#> 1: 2017-01-06 27.23376 39.7995 147.5085 18.70115 76.05074
#> 2: 2017-01-13 27.49475 40.8570 147.2582 18.97326 77.22778
#> 3: 2017-01-20 27.71648 40.4165 147.9072 18.66817 77.95100
#> 4: 2017-01-27 28.16688 41.7885 155.4819 19.26185 81.58563
#> 5: 2017-02-03 29.81370 40.5100 150.5680 19.20414 76.87957
#> 6: 2017-02-10 30.64816 41.3730 155.4447 19.03097 79.37682

1) Baseline ML (pooled): Ridge regression

Simple pooled regression on tabular features. The helpers build lagged features and future labels (4-week horizon).

# Prepare tabular features and labels
X <- ml_prepare_features(sample_prices_weekly, sample_prices_daily)
Y <- make_labels(sample_prices_weekly, horizon = 4L, type = "log")

# Linear/Ridge baseline
ridge <- ml_make_model("ridge")

set.seed(1)
res_baseline <- ml_backtest(
  features_list = X, labels = Y,
  fit_fn  = ridge$fit,
  predict_fn = ridge$predict,
  schedule = list(is = 104L, oos = 4L, step = 4L),  # 2y IS, 1m OOS, monthly step
  transform = "zscore",                              # IS-only scaling (no leakage)
  selection = list(top_k = 15L),
  weighting = list(method = "rank"),
  prices = sample_prices_weekly,
  initial_capital = 1e5,
  name = "Baseline Ridge (pooled)"
)

print(res_baseline$backtest)
#> Backtest Result:  Baseline Ridge (pooled) 
#> =====================================
#> Warmup Period: 104 observations (no trading)
#> Active Period: 2018-12-31 to 2019-12-31 (54 observations)
#> Initial Capital: $1e+05
#> Final Value: $135,743
#> Total Return (active period): 35.74%
#> Total Return (full period): 35.74%
#> Transactions: 784
#> 
#> Annualized Return: 34.22%
#> Annualized Volatility: 11.74%
#> Sharpe Ratio: 2.91
#> Max Drawdown: -6.08%
plot(res_baseline$backtest, type = "performance")


2) Ensemble: Ridge + XGBoost

This section is optional. It runs only if at least one of ranger/xgboost is installed.

# Start with ridge (always available)
models <- list(ml_make_model("ridge"))

# Add RF only if ranger is installed
if (has_rf) {
  models <- c(models, list(ml_make_model("rf", num.trees = if (heavy) 400L else 200L, mtry = 3L)))
}

# Add XGBoost only if xgboost is installed
if (has_xgb) {
  models <- c(models, list(
    ml_make_model(
      "xgboost",
      params  = list(objective = "reg:squarederror", max_depth = 4L, eta = 0.07),
      nrounds = if (heavy) 300L else 150L
    )
  ))
}

# Build the ensemble from whatever is available
ens <- do.call(ml_make_ensemble, models)

set.seed(2)
res_ens <- ml_backtest(
  features_list = X, labels = Y,
  fit_fn = ens$fit, predict_fn = ens$predict,
  schedule = list(is = 104L, oos = 4L, step = 4L),
  transform = "zscore",
  selection = list(top_k = 15L),
  weighting = list(method = "rank"),
  prices = sample_prices_weekly,
  initial_capital = 1e5,
  name = "Ensemble (available learners)"
)

print(res_ens$backtest)
#> Backtest Result:  Ensemble (available learners) 
#> =====================================
#> Warmup Period: 104 observations (no trading)
#> Active Period: 2018-12-31 to 2019-12-31 (54 observations)
#> Initial Capital: $1e+05
#> Final Value: $133,347
#> Total Return (active period): 33.35%
#> Total Return (full period): 33.35%
#> Transactions: 872
#> 
#> Annualized Return: 31.93%
#> Annualized Volatility: 12.13%
#> Sharpe Ratio: 2.63
#> Max Drawdown: -7.33%
plot(res_ens$backtest, type = "performance")

3) Sector-neutral modelling (tabular XGBoost, per-group)

This section is optional and runs only if xgboost is installed.

symbols <- setdiff(names(sample_prices_weekly), "Date")
gmap    <- demo_sector_map(symbols, n_groups = 4L)  # demo mapping for the sample data

xgb_g <- ml_make_model(
  "xgboost",
  params  = list(objective = "reg:squarederror", max_depth = 3L, eta = 0.05),
  nrounds = if (heavy) 250L else 150L
)

set.seed(3)
res_xgb_sect <- ml_backtest(
  features_list = X, labels = Y,
  fit_fn = xgb_g$fit, predict_fn = xgb_g$predict,
  schedule = list(is = 104L, oos = 4L, step = 4L),
  group = "per_group", group_map = gmap,   # sector-neutral training
  transform = "zscore",
  selection = list(top_k = 15L),
  weighting = list(method = "softmax", temperature = 12),
  prices = sample_prices_weekly,
  initial_capital = 1e5,
  name = "XGBoost (per-sector neutral)"
)

print(res_xgb_sect$backtest)
#> Backtest Result:  XGBoost (per-sector neutral) 
#> =====================================
#> Warmup Period: 104 observations (no trading)
#> Active Period: 2018-12-31 to 2019-12-31 (54 observations)
#> Initial Capital: $1e+05
#> Final Value: $129,909
#> Total Return (active period): 29.91%
#> Total Return (full period): 29.91%
#> Transactions: 870
#> 
#> Annualized Return: 28.66%
#> Annualized Volatility: 10.95%
#> Sharpe Ratio: 2.62
#> Max Drawdown: -6.74%
plot(res_xgb_sect$backtest, type = "performance")


4) Sequence model (GRU, pooled): “returns pyramid”

Optional and disabled by default. Enable locally by running Sys.setenv(RUN_SEQ = "true") before knitting, and only if your installation supports sequence models.

tf_autograph_scope()  # isolate TF Autograph cache to avoid detritus NOTE

# Build a compact 'returns pyramid' of momentum-like sequences (lagged)
r1  <- panel_lag(calc_momentum(sample_prices_weekly,  1L), 1L)
r4  <- panel_lag(calc_momentum(sample_prices_weekly,  4L), 1L)
r12 <- panel_lag(calc_momentum(sample_prices_weekly, 12L), 1L)

features_seq <- list(r1 = r1, r4 = r4, r12 = r12)
Y_seq <- make_labels(sample_prices_weekly, horizon = 4L, type = "log")

units  <- if (heavy) 32L else 8L
epochs <- if (heavy) 12L else 4L

seq_gru <- ml_make_seq_model(
  "gru",
  steps  = 26L,
  units  = units,
  epochs = epochs,
  seed   = 42L
)

set.seed(42)
res_seq_gru <- ml_backtest_seq(
  features_list   = features_seq,
  labels          = Y_seq,
  steps           = 26L,
  horizon         = 4L,
  fit_fn          = seq_gru$fit,
  predict_fn      = seq_gru$predict,
  schedule        = list(is = 104L, oos = 4L, step = 4L),
  group           = "pooled",
  normalize       = "zscore",
  selection       = list(top_k = 10L),
  weighting       = list(method = "softmax", temperature = 12),
  prices          = sample_prices_weekly,
  initial_capital = 1e5,
  name            = "Seq-GRU (pooled): returns pyramid (26x3)"
)

print(res_seq_gru$backtest)
plot(res_seq_gru$backtest, type = "performance")

5) Sequence model (GRU, per-group): sector-neutral sequences

Optional and disabled by default. Enable with RUN_SEQ="true".

tf_autograph_scope()  # isolate TF Autograph cache for this chunk too

symbols <- setdiff(names(sample_prices_weekly), "Date")
gmap    <- demo_sector_map(symbols, n_groups = 4L)

units_g  <- if (heavy) 32L else 8L
epochs_g <- if (heavy) 12L else 4L

seq_gru_g <- ml_make_seq_model(
  "gru",
  steps  = 26L,
  units  = units_g,
  epochs = epochs_g,
  seed   = 123L
)

set.seed(123)
res_seq_gru_g <- ml_backtest_seq(
  features_list   = features_seq,
  labels          = Y_seq,
  steps           = 26L,
  horizon         = 4L,
  fit_fn          = seq_gru_g$fit,
  predict_fn      = seq_gru_g$predict,
  schedule        = list(is = 104L, oos = 4L, step = 4L),
  group           = "per_group", group_map = gmap,
  normalize       = "zscore",
  selection       = list(top_k = 10L),
  weighting       = list(method = "softmax", temperature = 12),
  prices          = sample_prices_weekly,
  initial_capital = 1e5,
  name            = "Seq-GRU (per-sector neutral): returns pyramid (26x3)"
)

print(res_seq_gru_g$backtest)
plot(res_seq_gru_g$backtest, type = "performance")

6) Light tuning: Top-K and softmax temperature

Runs only off-CRAN (when NOT_CRAN=true).

topk_vals <- c(8L, 10L, 12L, 15L)
temp_vals <- c(8, 12, 16)

score_tbl <- tune_ml_backtest(
    features_list = X, labels = Y, prices = sample_prices_weekly,
    fit_fn = ridge$fit, predict_fn = ridge$predict,
    schedule = list(is = 104L, oos = 4L, step = 4L),
    grid = list(
        top_k = topk_vals,
        temperature = temp_vals,
        method = "softmax",
        transform = "zscore"
    )
)

score_tbl[order(-sharpe)][1:10]

Recap & Next Steps

Try next:
1) Replace GRU with LSTM/CNN1D if available (still gated by RUN_SEQ).
2) Blend tabular and sequence scores (e.g., average ranks) before weighting.
3) Add exposure caps or per-sector position limits when selecting Top-K.

sessionInfo()
#> R version 4.2.1 (2022-06-23 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 26200)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=C                           
#> [2] LC_CTYPE=English_United Kingdom.utf8   
#> [3] LC_MONETARY=English_United Kingdom.utf8
#> [4] LC_NUMERIC=C                           
#> [5] LC_TIME=English_United Kingdom.utf8    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] data.table_1.16.0     PortfolioTesteR_0.1.3
#> 
#> loaded via a namespace (and not attached):
#>  [1] Rcpp_1.0.13       bslib_0.9.0       compiler_4.2.1    jquerylib_0.1.4  
#>  [5] iterators_1.0.14  tools_4.2.1       xts_0.14.1        digest_0.6.37    
#>  [9] jsonlite_2.0.0    evaluate_1.0.5    lifecycle_1.0.4   lattice_0.20-45  
#> [13] rlang_1.1.6       Matrix_1.6-5      foreach_1.5.2     cli_3.6.1        
#> [17] rstudioapi_0.17.1 curl_7.0.0        yaml_2.3.10       xfun_0.53        
#> [21] fastmap_1.2.0     ranger_0.16.0     knitr_1.50        sass_0.4.10      
#> [25] xgboost_1.7.11.1  grid_4.2.1        glmnet_4.1-10     R6_2.6.1         
#> [29] survival_3.3-1    rmarkdown_2.29    TTR_0.24.4        codetools_0.2-18 
#> [33] htmltools_0.5.8.1 splines_4.2.1     shape_1.4.6.1     cachem_1.1.0     
#> [37] zoo_1.8-12