Package ‘RcppHMM’

January 20, 2025

Type Package

Title Rcpp Hidden Markov Model

Version 1.2.2

Date 2017-11-21

Author Roberto A. Cardenas-Ovando, Julieta Noguez and Claudia Rangel-Escareno
Maintainer Roberto A. Cardenas-Ovando <robalecarova@gmail.com>

Description Collection of functions to evaluate sequences, decode hidden states and estimate parame-
ters from a single or multiple sequences of a discrete time Hidden Markov Model. The ob-
served values can be modeled by a multinomial distribution for categorical/labeled emis-
sions, a mixture of Gaussians for continuous data and also a mixture of Poissons for discrete val-
ues. It includes functions for random initialization, simulation, backward or forward se-
quence evaluation, Viterbi or forward-backward decoding and parameter estimation using an Ex-
pectation-Maximization approach.

License GPL (>=2)

Imports Rcpp (>=0.12.6)

LinkingTo Rcpp, ReppArmadillo
NeedsCompilation yes
SystemRequirements C++11

Repository CRAN

Date/Publication 2017-11-21 19:27:14 UTC

Contents
ReppHMM-package e 2
Change Log e 4
evaluation L. e e e e e e e 5
forwardBackward L 8
generateObservations e 12
ItGHMM 15
nitHMM . . . 16
itPHMM e 17

2 RceppHMM-package

learnEM e e e e 18
loglikelihood 23
SEtNAMES o e e e e e e e 27
setParameters e e e e 28
verifyModel 30
VItErbl e e e 33

Index 37

RcppHMM-package Overview of Package RecppHMM
Description

This package can model observations based on hidden Markov models. The observations can be
considered to be emitted by a multinomial distribution, A mixture of Gaussians or a mixture of
Poissons. It can be used for inference, parameter estimation and simulation.

Details

The package can be used to represent a discrete-time hidden Markov model. The states can generate
categorical (labeled), continuous or discrete observations. The hidden state transition and observa-
tions can be randomly generated based on fixed parameters. Also, the inference methods can be
used to evaluate sequences or decode the hidden states that generated the observations. Finally, the
model parameters can be estimated by a single or multiple observed sequences.

Author(s)

Roberto A. Cardenas-Ovando, Julieta Noguez and Claudia Rangel-Escareno

Maintainer: Roberto A. Cardenas-Ovando <robalecarova@gmail.com>

References

Bilmes, J.E. (1998). A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models. International Computer Science
Institute.

Ibe, O. (2009). Markov processes for stochastic modeling. Oxford.

Rabiner, L.R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE.

Rabiner L.; Juang, B.H. (1993) Fundamentals of Speech Recognition. Prentice Hall Signal Pro-
cessing Series.

RceppHMM-package

Examples

Multinomial case
Set the model parameters to be estimated
<- c("First","Second")
<= c("A","T","C","G")
<- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

> 3 5 H H

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- ¢(0.5, 0.5)
params <- list("Model” = "HMM",
"StateNames"” = n,
"ObservationNames"” = m,
"A" = A,
"B" = B,
"Pi" = Pi)

Model parameters validation
HMM <- verifyModel (params)

Data simulation
Multiple sequences

set.seed(100)

length <- 100

seqs <- 100

observationSequences<- c()

for(i in 1:seqgs){
Y <- generateObservations(HMM , length)$Y
observationSequences <- rbind(observationSequences , Y)

}

New model random initialization

set.seed(1000)

newModel <- initHMM(2,4)
n = c("X1","X2")

m = C(”A“’”T“,”C”’”G")

Change model names

newModel <- setNames(newModel,
list("StateNames” = n,

4 Change Log

"ObservationNames” = m))
Model parameters estimation

newModel <- learnEM(newModel,
observationSequences,
iter=300,
delta = 1E-8,
pseudo = 0,
print = TRUE)

New sequence simulation to compare the new model
Data simulation

Single sequence
Y <- generateObservations(HMM , length)$Y

Evaluation

evaluation(newModel, Y, "f")
evaluation(newModel, Y, "b")

Hidden state decoding

hiddenStatesViterbi <- viterbi(newModel, Y)
hiddenStatesFB <- forwardBackward(newModel, Y)

Change Log Changes Made to Package ReppHMM

Description

This page contains a listing of recent changes made to the package.

Details

1. More examples were added to some functions. (November 2017)

2. Since there are different classes of HMMs and each of them with the same algorithms, a
verification step was added to avoid memory leaks and variable compatibility. (May 2017)

3. The class of HMM with observations being modelled by a Gaussian Mixture Model (GHMM)
was updated to have also a multivariate version (see initGHMM). (July 2017)

4. The emission matrix of the GHMM model was divided into two parameters: Mu and Sigma.
Mu is now a 2D matrix with number of rows equal to the dimensionality of the observation
vector and the number of columns equal to the number of hidden states. Sigma is now a 3D
matrix with number of rows and columns equal to the the dimensionality of the observation
vector and the number of slices equal to the number of hidden states (see initGHMM). (July
2017)

evaluation 5

evaluation Observed sequence evaluation given a model

Description

This function computes the log-likelihood of an observed sequence being generated by a hidden
Markov model with fixed parameters.

Usage
evaluation(hmm , sequence , method = "f")
Arguments
hmm a list with the necessary variables to define a hidden Markov model.
sequence sequence of observations to be evaluated. HMM and PHMM use a vector.
GHMM uses a matrix.
method method specified to perform the evaluation
Details

The methods to be selected can be "f" for the forward algorithm or "b" for the backward algorithm.
GHMM uses a matrix with the variables as rows and consecutive observations in the columns.
Value

A value that represents the log-likelihood of the sequence given the hiddden Markov model.

References

Cited references are listed on the ReppHMM manual page.

See Also

generateObservations , verifyModel , loglikelihood

Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,

evaluation

0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)

Pi <- c(0.5, 0.5)

params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames"” = m,
AT = A,
"B" = B,
"Pi" = Pi)

HMM <- verifyModel (params)

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM, length)

#Sequence evaluation

It assumes that it will be evaluated using the forward algorithm
evaluation(HMM, observationSequence$Y)

The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM, observationSequence$Y, "b")

Values for a hidden Markov model with discrete observations
n <- c("Low","Normal”,"High")
A <- matrix(c(0@.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol=length(n), byrow=TRUE)

B <- c(2600, # First distribution with mean 2600

2700, # Second distribution with mean 2700

2800) # Third distribution with mean 2800
Pi <- rep(1/length(n), length(n))
HMM.discrete <- verifyModel (1ist("Model”="PHMM", "StateNames” =n, "A" = A, "B" =B, "Pi" =Pi))
Data simulation
set.seed(100)
length <- 100
observationSequence <- generateObservations(HMM.discrete, length)

#Sequence evaluation

It assumes that it will be evaluated using the forward algorithm

evaluation

evaluation(HMM.discrete, observationSequences$Y)

The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.discrete, observationSequence$Y, "b")

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low","Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,1length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list("Model"="GHMM",
"StateNames"” = N,

IIAII = A,

"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.cont.univariate, length)

#Sequence evaluation

It assumes that it will be evaluated using the forward algorithm
evaluation(HMM.cont.univariate, observationSequence$Y)

The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.cont.univariate, observationSequence$Y, "b")

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N = c("X1","X2")

M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol =M,
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,

0.4,1.0,0.8,
0.6,0.8,1.0), ncol =M,
byrow = TRUE)
Mu <- matrix(c(@, 5,
10, 0,
5, 10),
nrow = M,
byrow = TRUE)
A <- matrix(c(0.6, 0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- ¢(@.5, 0.5)
HMM.cont.multi <- verifyModel(list("Model” = "GHMM",
"StateNames” = N,
"A" = A,
"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100

observationSequence <- generateObservations(HMM.cont.multi, length)

#Sequence evaluation

It assumes that it will be evaluated using the forward algorithm

evaluation(HMM.cont.multi, observationSequence$Y)

The user sets the backward algorithm to evaluate the algorithm
evaluation(HMM.cont.multi, observationSequence$Y, "b")

forwardBackward

forwardBackward Forward-backward algortihm for hidden state decoding

Description

Function used to get the most likely hidden states at each observation in the provided sequence.

Usage

forwardBackward(hmm, sequence)

forwardBackward 9

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
sequence sequence of observations to be decoded. HMM and PHMM use a vector. GHMM
uses a matrix.
Details

GHMM uses a matrix with the variables as rows and consecutive observations in the columns.

Value

A vector of hidden states in the traveled path of observations.

References

Cited references are listed on the ReppHMM manual page.

See Also

generateObservations, verifyModel , viterbi

Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- c(@.5, 0.5)
params <- list("Model” = "HMM",
"StateNames"” = n,
"ObservationNames"” = m,
AT = A,
"B" = B,
"Pi" = Pi)

HMM <- verifyModel (params)

Data simulation
set.seed(100)
length <- 100

10

observationSequence <- generateObservations(HMM, length)
#Sequence decoding

hiddenStates <- forwardBackward(HMM, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with discrete observations

n <- c("Low","Normal”,"High")

A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),

ncol=length(n), byrow=TRUE)
B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model”="PHMM", "StateNames” =n, "A" = A,

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.discrete, length)

#Sequence decoding
hiddenStates <- forwardBackward(HMM.discrete, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low","Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list("Model"="GHMM",
"StateNames” = N,
AT = A,
"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

forwardBackward

"M = B, "piM = Pl))

forwardBackward

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.cont.univariate, length)

#Sequence decoding
hiddenStates <- forwardBackward(HMM.cont.univariate, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N = c("X1","X2")

M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol =M,
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M,
byrow = TRUE)
Mu <- matrix(c(@, 5,

10, 0,
5, 10),
nrow = M,

byrow = TRUE)

A <- matrix(c(0.6, 0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- ¢(0.5, 0.5)

HMM.cont.multi <- verifyModel(list("Model” = "GHMM",
"StateNames” = N,
"A" = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.cont.multi, length)

#Sequence decoding
hiddenStates <- forwardBackward(HMM.cont.multi, observationSequence$Y)
print(hiddenStates)

11

12 generateObservations

generateObservations Generate observations given a model

Description

Function used to generate simulated observations given a hidden Markov model.

Usage

generateObservations(hmm, length)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
length the number of observations will be generated.

Value

A "list" that contains the generated observations and the hidden state that generated it.

X a vector representing the path of hidden states.
Y generated observations. HMM and PHMM return a vector. GHMM returns a
matrix.
Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

byrow = TRUE)
Pi <- c(0.5, 0.5)

params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames” = m
AT = A,
"B" = B,

)

generateObservations 13

"Pi" = Pi)
HMM <- verifyModel (params)

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM, length)
Observed data

head(observationSequence$Y)

Hidden states path

head(observationSequence$X)

Values for a hidden Markov model with discrete observations
n <- c("Low","Normal”,"High")

A <- matrix(c(@.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol=length(n), byrow=TRUE)

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))
HMM.discrete <- verifyModel(list("Model”="PHMM" 6 "StateNames” =n, "A" = A, "B" =B, "Pi" = Pi))

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.discrete, length)
Observed data

head(observationSequence$Y)

Hidden states path

head(observationSequence$X)

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low","Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,1length(N)))

14

Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list(

Data simulation
set.seed(100)
length <- 100

generateObservations

"Model”="GHMM" ,
"StateNames” =
AT = A,

"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

N!

observationSequence <- generateObservations(HMM.cont.univariate, length)

Observed data
observationSequence$Y[,1:6]
Hidden states path
head(observationSequence$X)

Values for a hidden Markov model with continuous observations

Number of hidden states = 2
Multivariate gaussian mixture model

Observed vector with dimensionality of
N = c("X1","X2")
M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,

0.8,1.0,0.8,
0.8,0.8,1.0), ncol
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol
byrow = TRUE)
Mu <- matrix(c(@, 5,
10, 0,
5, 10),
nrow = M,
byrow = TRUE)

A <- matrix(c(0.6, 0.4,

0.3, 0.7),
ncol = length(N),
byrow = TRUE)

Pi <- ¢(0.5, 0.5)

HMM.cont.multi <- verifyModel(list("Mode

3

1
<

1
=<

1" = HGHMMH ,

"StateNames” = N,

AN =
"MU"

A,

= Mu,

"Sigma" = Sigma,

initGHMM 15

"Pi" = Pi))

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.cont.multi, length)
Observed data

observationSequence$Y[,1:6]

Hidden states path

head(observationSequence$X)

initGHMM Random Initialization for a Hidden Markov Model with emissions
modeled as continuous variables

Description

Function used to generate a hidden Markov model with continuous variables and random parame-
ters. This method allows using the univariate version of a Gaussian Mixture Model when setting m
= 1. The code for the methods with categorical values or discrete data can be viewed in "initHMM"
and "initPHMM", respectively.

Usage

initGHMM(n,m)

Arguments
n the number of hidden states to use.
m the number of variables generated by the hidden states (Dimensionality of the
bbserved vector).
Value

A "list"” that contains the required values to specify the model.

Model it specifies that the observed values are to be modeled as a Gaussian mixture
model.

StateNames the set of hidden state names.

A the transition probabilities matrix.

Mu a matrix of means of the observed variables (rows) in each states (columns).

Sigma a 3D matrix that has the covariance matrix of each state. The number of slices

is equal to the maximum number of hidden states.

Pi the initial probability vector.

16 initHMM

References

Cited references are listed on the ReppHMM manual page.

Examples

n <-3

m<-5

model <- initGHMM(n, m)
print(model)

initHMM Random Initialization for a Hidden Markov Model with emissions
modeled as categorical variables

Description

Function used to generate a hidden Markov model with categorical variables and random parame-
ters. The code for the methods with continuous values or discrete data can be viewed in " initGHMM"
and "initPHMM", respectively.

Usage

initHMM(n, m)

Arguments

n the number of hidden states to use.

m the number of possible categories (labels) generated by the hidden states.
Value

A "list"” that contains the required values to specify the model.

Model it specifies that the observed values are to be modeled as a multinomial distribu-
tion.

StateNames the set of hidden state names.

ObservationNames

the set of possible observed values.
A the transition probabilities matrix.
the emission probabilities matrix.

Pi the initial probability vector.

References

Cited references are listed on the ReppHMM manual page.

initPHMM 17

Examples

n<-2

m<- 2

model <- initHMM(n,m)
print(model)

initPHMM Random Initialization for a Hidden Markov Model with emissions
modeled as discrete variables

Description

Function used to generate a hidden Markov model with discrete observations and random param-
eters. This model is used when the observed data are counts that can be modelled with a mixture
of Poissons. The code for the methods with categorical values or continuous data can be viewed in
"initHMM" and "initGHMM", respectively.

Usage

initPHMM(n)

Arguments

n the number of hidden states to use.

Value

A "list"” that contains all the required values to specify the model.

Model it specifies that the observed values are to be modeled as a Poisson mixture
model.
StateNames the set of hidden state names.
A the transition probabilities matrix.
B a vector with the lambda parameter for each Poisson distribution.
Pi the initial probability vector.
References

Cited references are listed on the ReppHMM manual page.

Examples

n <- 2
model <- initPHMM(n)
print(model)

18 learnEM

learnEM Expectation-Maximization algorithm to estimate the model parame-
ters

Description

Expectation-Maximization algorithm to estimate the model parameters based on a single or multiple
observed sequences.

Usage

learnEM(hmm, sequences, iter = 100, delta = 1e-05, pseudo = @, print = TRUE)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
sequences sequences of observations to be used as training set. HMM and PHMM use a
matrix. GHMM uses a 3D array.
iter a value that sets the maximum number of iterations to run.
delta a value set to be the minimum error considered as a convergence criteria.
pseudo a value set to consider pseudo-counts.
print a logical value to print the error at each iteration.
Details

This function can be used for univariate or multivariate distributions. HMM and PHMM use a
matrix with different sequences as rows and consecutive observations in the columns. GHMM uses
an array with the variables as rows, consecutive observations in the columns and different sequences
as slices.

Value

A "list"” that contains the estimated hidden Markov model parameters.

References

Cited references are listed on the ReppHMM manual page.

See Also

generateObservations , verifyModel

learnEM

Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- ¢(0.5, 0.5)
params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames"” = m,
AT = A,
"B" = B,
"Pi" = Pi)

HMM <- verifyModel (params)

Data simulation
set.seed(100)
length <- 100
seqs <- 10

Multiple sequences to be used as training set
observationSequences<- c()
for(i in 1:seqgs){
Y <- generateObservations(HMM , length)$Y
observationSequences <- rbind(observationSequences , Y)

}

New model random initialization
Model to be trained
set.seed(1000)
newModel <- initHMM(2,4)
n = c("X1","X2")
m = c("A","T","C","G")
newModel <- setNames(newModel,
list("StateNames” = n,
"ObservationNames” = m))

newModel <- learnEM(newModel,
observationSequences,
iter= 50,

19

20

learnEM
delta = 1E-5,
pseudo = 3,
print = TRUE)
print(newModel)

Values for a hidden Markov model with discrete observations
n <- c("Low","Normal”,"High")

A <- matrix(c(0.5, 0.3,0.2,

0.2, 0.6, 0.2,

0.1, 0.3, 0.6),
ncol=length(n), byrow=TRUE)

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))
HMM.discrete <- verifyModel (1ist("Model”"="PHMM", "StateNames” =n, "A" = A, "B" =B, "Pi" =Pi))

Data simulation
set.seed(100)
length <- 100
seqs <- 50

Multiple sequences to be evaluated
observationSequences<- c()
for(i in 1:seqgs){
Y <- generateObservations(HMM.discrete , length)$Y
observationSequences <- rbind(observationSequences , Y)

}

dim(observationSequences)

New model random initialization
Model to be trained
set.seed(1000)

newModel <- initPHMM(3)

newModel <- learnEM(newModel,
observationSequences,
iter= 50,
delta = 1E-5,
print = FALSE)

print(newModel)

Values for a hidden Markov model with continuous observations

learnEM 21

Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low","Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list("Model"="GHMM",
"StateNames” = N,

IIAH = A’

"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100
seqs <- 50

Multiple sequences to be evaluated
observationSequences<- array(@, dim = c(1, length, segs))
for(i in 1:seqgs){
Y <- generateObservations(HMM.cont.univariate , length)$Y
observationSequences[,,i] <- Y

}
dim(observationSequences)

New model random initialization
Model to be trained
set.seed(1000)

newModel <- initGHMM(3)

newModel <- learnEM(newModel,
observationSequences,
iter= 50,
delta = 1E-5,
print = FALSE)

print(newModel)

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

22

N = C(UX-I n, lezll)
M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M,
byrow = TRUE)
Mu <- matrix(c(@, 5,

1
<

19, 0,
5, 190),
nrow = M,

byrow = TRUE)

A <- matrix(c(0.6,0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- ¢(0.5, 0.5)

HMM.cont.multi <- verifyModel(list("Model” = "GHMM",
"StateNames” = N,
IIAII = A’
"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100
seqs <- 50

Multiple sequences to be evaluated
observationSequences<- array(@, dim = c(M, length, seqs)
for(i in 1:seqgs){
Y <- generateObservations(HMM.cont.multi , length)$Y
observationSequences[,,i] <- Y

3
dim(observationSequences)

New model random initialization
Model to be trained
set.seed(1000)

newModel <- initGHMM(2, M)

newModel <- learnEM(newModel,
observationSequences,

learnEM

loglikelihood 23

iter= 50,
delta = 1E-5,
print = FALSE)

print(newModel)

loglikelihood Evaluation of multiple observed sequences given a model

Description
This function computes the log-likelihood of multiple observed sequences generated by a hidden
Markov model with fixed parameters.

Usage

loglikelihood(hmm, sequences)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
sequences sequences of observations to be evaluated. HMM and PHMM use a matrix.
GHMM uses a 3D array.
Value

A value that represents the log-likelihood of the multiple observed sequences given the hiddden
Markov model. HMM and PHMM use a matrix with different sequences as rows and consecu-
tive observations in the columns. GHMM uses an array with the variables as rows, consecutive
observations in the columns and different sequences as slices.

References

Cited references are listed on the ReppHMM manual page.

See Also

generateObservations , verifyModel , evaluation

Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,

24

byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- ¢(@.5, 0.5)
params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames” = m,
AT = A,
"B" = B,
"Pi" = Pi)

HMM <- verifyModel (params)

Data simulation
set.seed(100)
length <- 100
seqs <- 10

Multiple sequences to be evaluated
observationSequences<- c()
for(i in 1:seqgs){
Y <- generateObservations(HMM , length)$Y
observationSequences <- rbind(observationSequences , Y)

3
dim(observationSequences)

#Sequences evaluation
loglikelihood(HMM, observationSequences)

Values for a hidden Markov model with discrete observations
n <- c("Low"”,"Normal”, "High")

A <- matrix(c(0.5, 0.3,0.2,

0.2, 0.6, 0.2,

0.1, 0.3, 0.6),
ncol=length(n), byrow=TRUE)

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model”="PHMM", "StateNames” =n,

PAM = A,

loglikelihood

"BM = B, "pit = Pl))

loglikelihood 25

Data simulation
set.seed(100)
length <- 100
segs <- 10

Multiple sequences to be evaluated
observationSequences<- c()
for(i in 1:seqgs){
Y <- generateObservations(HMM.discrete , length)$Y
observationSequences <- rbind(observationSequences , Y)

3
dim(observationSequences)

#Sequences evaluation
loglikelihood(HMM.discrete, observationSequences)

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low","Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,1length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list("Model"="GHMM",
"StateNames” = N,

IIAII = A’

"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100
seqs <- 10

Multiple sequences to be evaluated
observationSequences<- array(@, dim = c(1, length, segs))
for(i in 1:seqgs){
Y <- generateObservations(HMM.cont.univariate , length)$Y
observationSequences[,,i] <- Y

3
dim(observationSequences)

#Sequences evaluation

loglikelihood

loglikelihood(HMM.cont.univariate, observationSequences)

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N = c("X1","X2")

M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M,
byrow = TRUE)
Mu <- matrix(c(Q, 5,

1
=<

10, 0,
5, 10),
nrow = M,

byrow = TRUE)

A <- matrix(c(0.6,0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- ¢(0.5, 0.5)

HMM.cont.multi <- verifyModel(list("Model” = "GHMM",
"StateNames” = N,
"A" = A,
"Mu" = Mu,
"Sigma” = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100
seqs <- 10

Multiple sequences to be evaluated
observationSequences<- array(@, dim = c(M, length, seqgs))
for(i in 1:seqgs){
Y <- generateObservations(HMM.cont.multi , length)$Y
observationSequences[,,i] <- Y

}

dim(observationSequences)

setNames 27

#Sequences evaluation
loglikelihood(HMM.cont.multi, observationSequences)

setNames Set the names of the model

Description

Function used to set new hidden state names to the model. If it is a categorical model, it also sets
the labels for the observations. This function verifies that all the parameters and new names agree
in size.

Usage

setNames(hmm , names)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
names a list with the new names to be set in the model.

Value

A "list"” that contains the verified hidden Markov model parameters.

Examples

Values for a hidden Markov model with categorical observations

set.seed(1000)
newModel <- initHMM(2,4)
n <- c("First","Second")
m <= c("A","T","C","G")
newModel <- setNames(newModel,
list("StateNames” = n,
"ObservationNames” = m))

Values for a hidden Markov model with continuous observations
set.seed(1000)
newModel <- initGHMM(3)
n <- c("Low”, "Normal”, "High")
newModel <- setNames(newModel,
list("StateNames”" = n))

Values for a hidden Markov model with discrete observations

set.seed(1000)

28 setParameters

newModel <- initPHMM(3)
n <- c("Low”, "Normal”, "High")
newModel <- setNames(newModel,
list("StateNames” = n))

setParameters Set the model parameters

Description
Function used to set the model parameters. This function verifies that parameters and names corre-
spond.

Usage

setParameters(hmm , params)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
params a list with the new parameters to be set in the model.

Value

A "list"” that contains the verified hidden Markov model parameters.

Examples

Values for a hidden Markov model with categorical observations

set.seed(1000)
newModel <- initHMM(2,4)

A <- matrix(c(0.378286,0.621714,
0.830970,0.169030),
nrow = 2,
byrow = TRUE)

B <- matrix(c(@.1930795, ©.2753869, 0.3463100, 0.1852237,
0.2871577, 0.1848870, 0.1614925, 0.3664628),
nrow = 2,
byrow = TRUE)

Pi <- c(0.4757797, ©.5242203)
newModel <- setParameters(newModel,

list("A" = A,
" = B

setParameters

"Pi" = Pi))
Values for a hidden Markov model with discrete observations

set.seed(1000)
n<-3
newModel <- initPHMM(n)

A <- matrix(c(0.5, 0.3 s
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol=n, byrow=TRUE)

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

Pi <- rep(1/n , n)

newModel <- setParameters(newModel,

list("A" = A,
"g" = B,
"Pi” = Pi))

Values for a hidden Markov model with continuous observations
Number of hidden states = 3

Univariate gaussian mixture model

N <-3

newModel <- initGHMM(N)

A <- matrix(c(,0.2

, 0.
0.

0.5, 0.3
0.2, 0.6
0.1, 0.3,

))
ncol= N, byrow = TRUE)
Mu <- matrix(c(@, 50, 100), ncol = N)
Sigma <- array(c(144, 400, 100), dim = c(1,1,N))
Pi <- rep(1/N, N)

newModel <- setParameters(newModel,

list("A" = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N <-2

M<-3

29

30

set.seed(100)
newModel <- initGHMM(N,M)

Same number of dimensions
Sigma <- array(@, dim =c(M,M,N))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M,
byrow = TRUE)
Mu <- matrix(c(@, 5,
10, 0,
5, 10),
nrow = M,
byrow = TRUE)

1
<

A <- matrix(c(0.6,0.4,
0.3, 0.7),
ncol = N,
byrow = TRUE)
Pi <- ¢(0.5, 0.5)

newModel <- setParameters(newModel,
list("A" = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

verifyModel

verifyModel Model parameter verification

Description

Function used to verify that all the parameters satisfy the model constraints.

Usage

verifyModel (model)

Arguments

model a list with the necessary parameters to set a hidden Markov model with fixed

values.

verifyModel 31

Details

The model must have a stochastic transition matrix and a stochastic initial probability vector, also
the row and column sizes must coincide with the number of provided state names. If the model uses
categorical values, the emission matrix also must be stochastic and must have a column for each
observation label and a row for each state name. And if the model uses discrete data, all the values
must be positive assuming that they are counts.

Value

A "list” that contains the verified hidden Markov model parameters.

Examples

Values for a hidden Markov model with categorical observations

n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.378286,0.621714,
0.830970,0.169030),
nrow = 2,
byrow = TRUE)

B <- matrix(c(@.1930795, ©.2753869, 0.3463100, 0.1852237,
0.2871577, ©0.1848870, 0.1614925, 0.3664628),
nrow = 2,
byrow = TRUE)

Pi <- c(0.4757797, 0.5242203)

params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames” = m,
"A" = A,
"B" = B,
"Pi" = Pi)

verifiedModel <- verifyModel(params)
print(verifiedModel)

Values for a hidden Markov model with discrete observations

n <- c("Low"”,"Normal”,"High")

A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),

ncol=length(n), byrow=TRUE)

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800

32

Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model”="PHMM", "StateNames” =n,
print(HMM.discrete)

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low”,"Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,

0.2, 0.6, 0.2,

0.1, 0.3, 0.6),

ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))
newModel <- verifyModel(list("Model"="GHMM",
"StateNames” = N,
"AY = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N = c("X1","X2")

M<-3

Same number of dimensions

Sigma <- array(@, dim =c(M,M,length(N)))

Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,

0.8,0.8,1.0), ncol = M)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M)
Mu <- matrix(c(@, 5,
10, 0,
5, 10), nrow = M)
A <- matrix(c(0.6,0.3,
0.4, 0.7), ncol = length(N))
Pi <- ¢(0.5, 0.5)
newModel <- verifyModel(list("Model” = "GHMM",

"StateNames"” = N,

MAM = A,

verifyModel

"M = B, "pi" = Pl))

viterbi 33

IIAH = A’

"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

viterbi Viterbi algorithm for hidden state decoding

Description

Function used to get the most likely path of hidden states generated by the observed sequence.

Usage

viterbi(hmm, sequence)

Arguments
hmm a list with the necessary variables to define a hidden Markov model.
sequence sequence of observations to be decoded. HMM and PHMM use a vector. GHMM
uses a matrix.
Details

The Viterbi algorithm is based in a greedy approach, therefore it would only the give the most
probable path. GHMM uses a matrix with the variables as rows and consecutive observations in the
columns.

Value

A vector with the path of hidden states that generated the observed sequence.

References

Cited references are listed on the RcppHMM manual page.

See Also

generateObservations, verifyModel , forwardBackward

34

Examples

Values for a hidden Markov model with categorical observations
Set the model parameters
n <- c("First"”,"Second")
m <= c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)

B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- ¢(0.5, 0.5)
params <- list("Model” = "HMM",
"StateNames” = n,
"ObservationNames"” = m,
AT = A,
"B" = B,
"Pi" = Pi)

HMM <- verifyModel (params)

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM, length)

#Sequence decoding
hiddenStates <- viterbi(HMM, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with discrete observations
n <- c("Low","Normal”,"High")

A <- matrix(c(0.5, 0.3,0.2,
2, 0.6, 0.2,
0.1, 0.3, 0.6),

ncol=length(n), byrow=TRUE)

Q.
Q.

B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800
Pi <- rep(1/length(n), length(n))

HMM.discrete <- verifyModel(list("Model”="PHMM", "StateNames” =n,

"AY = A,

viterbi

"B" = B, "pi" = Pl))

viterbi 35

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.discrete, length)

#Sequence decoding
hiddenStates <- viterbi(HMM.discrete, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with continuous observations
Number of hidden states = 3
Univariate gaussian mixture model

N = c("Low”,"Normal”, "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)

Mu <- matrix(c(@, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))

HMM.cont.univariate <- verifyModel(list("Model"="GHMM",
"StateNames"” = N,

AT = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation

set.seed(100)

length <- 100

observationSequence <- generateObservations(HMM.cont.univariate, length)

#Sequence decoding
hiddenStates <- viterbi(HMM.cont.univariate, observationSequence$Y)
print(hiddenStates)

Values for a hidden Markov model with continuous observations
Number of hidden states = 2

Multivariate gaussian mixture model

Observed vector with dimensionality of 3

N = c("X1","X2")

M<-3

Same number of dimensions
Sigma <- array(@, dim =c(M,M,length(N)))
Sigmal,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol =M,
byrow = TRUE)
Sigmal,,2] <- matrix(c(1.0,0.4,0.6,

36

0.4,1.0,0.8,
0.6,0.8,1.0), ncol =M,
byrow = TRUE)
Mu <- matrix(c(@, 5,
10, 0,
5, 10),
nrow = M,
byrow = TRUE)
A <- matrix(c(@.6, 0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- ¢(@.5, 0.5)
HMM.cont.multi <- verifyModel(list("Model” = "GHMM",
"StateNames” = N,
"A" = A,
"Mu” = Mu,
"Sigma" = Sigma,
"Pi" = Pi))

Data simulation
set.seed(100)
length <- 100

observationSequence <- generateObservations(HMM.cont.multi, length)

#Sequence decoding

hiddenStates <- viterbi(HMM.cont.multi, observationSequence$Y)

print(hiddenStates)

viterbi

Index

x documentation setParameters, 28
Change Log, 4
* initialization verifyModel, 5, 9, 18, 23, 30, 33
initGHMM, 15 viterbi, 9, 33
initHMM, 16
initPHMM, 17
+ methods
evaluation, 5
forwardBackward, 8
generateObservations, 12
loglikelihood, 23
setNames, 27
setParameters, 28
verifyModel, 30
viterbi, 33
* optimize
learnEM, 18
viterbi, 33

Change Log, 4
Changes (Change Log), 4

evaluation, 5, 23
forwardBackward, 8, 33
generateObservations, 5, 9, 12, 18, 23, 33
initGHMM, 4, 15, 16, 17
initHMM, 15,16, 17
initPHMM, 15, 16, 17
learnEM, 18

list, 12, 15-18, 27, 28, 31
loglikelihood, 5, 23
RcppHMM, 5, 9, 16-18, 23, 33
RcppHMM (RcppHMM-package), 2
RcppHMM-package, 2

setNames, 27

37

	RcppHMM-package
	Change Log
	evaluation
	forwardBackward
	generateObservations
	initGHMM
	initHMM
	initPHMM
	learnEM
	loglikelihood
	setNames
	setParameters
	verifyModel
	viterbi
	Index

