Package 'quadprog'

October 13, 2022

Type Package

Title Functions to Solve Quadratic Programming Problems

Version 1.5-8

Date 2019-11-20

Author S original by Berwin A. Turlach <Berwin.Turlach@gmail.com> R port by Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at> Fortran contributions from Cleve Moler (dposl/LINPACK and (a modified version of) dpodi/LINPACK)

Maintainer Berwin A. Turlach <Berwin.Turlach@gmail.com>

Description This package contains routines and documentation for solving quadratic programming problems.

Depends R (>= 3.1.0)

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-11-20 08:20:02 UTC

R topics documented:

solve.QP	 	1
solve.QP.compact	 	3

5

Index

solve.QP

Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form $\min(-d^Tb + 1/2b^TDb)$ with the constraints $A^Tb \ge b_0$.

Usage

solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

Arguments

Dmat	matrix appearing in the quadratic function to be minimized.
dvec	vector appearing in the quadratic function to be minimized.
Amat	matrix defining the constraints under which we want to minimize the quadratic function.
bvec	vector holding the values of b_0 (defaults to zero).
meq	the first meq constraints are treated as equality constraints, all further as inequal- ity constraints (defaults to 0).
factorized	logical flag: if TRUE, then we are passing R^{-1} (where $D = R^T R$) instead of the matrix D in the argument Dmat.

Value

a list with the following components:

solution	vector containing the solution of the quadratic programming problem.	
value	scalar, the value of the quadratic function at the solution	
unconstrained.solution		
	vector containing the unconstrained minimizer of the quadratic function.	
iterations	vector of length 2, the first component contains the number of iterations the algorithm needed, the second indicates how often constraints became inactive after becoming active first.	
Lagrangian	vector with the Lagragian at the solution.	
iact	vector with the indices of the active constraints at the solution.	

References

D. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages 226–239.

D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex quadratic programs. *Mathematical Programming*, **27**, 1–33.

See Also

solve.QP.compact

solve.QP.compact

Examples

```
##
## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
## under the constraints: A^T b >= b0
## with b0 = (-8,2,0)^T
           (-4 2 0)
## and
       A = (-3 1 -2)
##
           (0 0 1)
##
## we can use solve.QP as follows:
##
Dmat
          <- matrix(0,3,3)
diag(Dmat) <- 1
dvec
          <- c(0,5,0)
          <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
Amat
bvec
          <- c(-8,2,0)
solve.QP(Dmat,dvec,Amat,bvec=bvec)
```

solve.QP.compact Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form $\min(-d^Tb + 1/2b^TDb)$ with the constraints $A^Tb \ge b_0$.

Usage

solve.QP.compact(Dmat, dvec, Amat, Aind, bvec, meq=0, factorized=FALSE)

Arguments

Dmat	matrix appearing in the quadratic function to be minimized.
dvec	vector appearing in the quadratic function to be minimized.
Amat	matrix containing the non-zero elements of the matrix A that defines the con- straints. If m_i denotes the number of non-zero elements in the <i>i</i> -th column of A then the first m_i entries of the <i>i</i> -th column of Amat hold these non-zero elements. (If maxmi denotes the maximum of all m_i , then each column of Amat may have arbitrary elements from row $m_i + 1$ to row maxmi in the <i>i</i> -th column.)
Aind	matrix of integers. The first element of each column gives the number of non- zero elements in the corresponding column of the matrix A . The following entries in each column contain the indexes of the rows in which these non-zero elements are.
bvec	vector holding the values of b_0 (defaults to zero).
meq	the first meq constraints are treated as equality constraints, all further as inequal- ity constraints (defaults to 0).
factorized	logical flag: if TRUE, then we are passing R^{-1} (where $D = R^T R$) instead of the matrix D in the argument Dmat.

a list with the following components:

solution	vector containing the solution of the quadratic programming problem.	
value	scalar, the value of the quadratic function at the solution	
unconstrained.solution		
	vector containing the unconstrained minimizer of the quadratic function.	
iterations	vector of length 2, the first component contains the number of iterations the algorithm needed, the second indicates how often constraints became inactive after becoming active first.	
Lagrangian	vector with the Lagragian at the solution.	
iact	vector with the indices of the active constraints at the solution.	

References

D. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages 226–239.

D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex quadratic programs. *Mathematical Programming*, **27**, 1–33.

See Also

solve.QP

Examples

```
##
## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
## under the constraints: A^T b >= b0
## with b0 = (-8, 2, 0)^T
## and
         (-4 2 0)
##
       A = (-3 \ 1 \ -2)
##
           (0 0 1)
## we can use solve.QP.compact as follows:
##
Dmat
           <- matrix(0,3,3)
diag(Dmat) <- 1
          <- c(0,5,0)
dvec
Aind
          <- rbind(c(2,2,2),c(1,1,2),c(2,2,3))
Amat
          <- rbind(c(-4,2,-2),c(-3,1,1))
          <- c(-8,2,0)
bvec
solve.QP.compact(Dmat,dvec,Amat,Aind,bvec=bvec)
```

Index

* optimize

solve.QP, 1
solve.QP.compact, 3

solve.QP, 1, 4
solve.QP.compact, 2, 3