dnssec.c
Go to the documentation of this file.
1 /*
2  * dnssec.c
3  *
4  * contains the cryptographic function needed for DNSSEC in ldns
5  * The crypto library used is openssl
6  *
7  * (c) NLnet Labs, 2004-2008
8  *
9  * See the file LICENSE for the license
10  */
11 
12 #include <ldns/config.h>
13 
14 #include <ldns/ldns.h>
15 #include <ldns/dnssec.h>
16 
17 #include <strings.h>
18 #include <time.h>
19 
20 #ifdef HAVE_SSL
21 #include <openssl/ssl.h>
22 #include <openssl/evp.h>
23 #include <openssl/rand.h>
24 #include <openssl/err.h>
25 #include <openssl/md5.h>
26 #endif
27 
28 ldns_rr *
30  const ldns_rr_type type,
31  const ldns_rr_list *rrs)
32 {
33  size_t i;
34  ldns_rr *candidate;
35 
36  if (!name || !rrs) {
37  return NULL;
38  }
39 
40  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
41  candidate = ldns_rr_list_rr(rrs, i);
42  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_RRSIG) {
43  if (ldns_dname_compare(ldns_rr_owner(candidate),
44  name) == 0 &&
46  == type
47  ) {
48  return candidate;
49  }
50  }
51  }
52 
53  return NULL;
54 }
55 
56 ldns_rr *
58  const ldns_rr_list *rrs)
59 {
60  size_t i;
61  ldns_rr *candidate;
62 
63  if (!rrsig || !rrs) {
64  return NULL;
65  }
66 
67  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
68  candidate = ldns_rr_list_rr(rrs, i);
69  if (ldns_rr_get_type(candidate) == LDNS_RR_TYPE_DNSKEY) {
70  if (ldns_dname_compare(ldns_rr_owner(candidate),
71  ldns_rr_rrsig_signame(rrsig)) == 0 &&
73  ldns_calc_keytag(candidate)
74  ) {
75  return candidate;
76  }
77  }
78  }
79 
80  return NULL;
81 }
82 
83 ldns_rdf *
85  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
86  return ldns_rr_rdf(nsec, 1);
87  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
88  return ldns_rr_rdf(nsec, 5);
89  } else {
90  return NULL;
91  }
92 }
93 
94 /*return the owner name of the closest encloser for name from the list of rrs */
95 /* this is NOT the hash, but the original name! */
96 ldns_rdf *
99  ldns_rr_list *nsec3s)
100 {
101  /* remember parameters, they must match */
102  uint8_t algorithm;
103  uint32_t iterations;
104  uint8_t salt_length;
105  uint8_t *salt;
106 
107  ldns_rdf *sname, *hashed_sname, *tmp;
108  bool flag;
109 
110  bool exact_match_found;
111  bool in_range_found;
112 
113  ldns_status status;
114  ldns_rdf *zone_name;
115 
116  size_t nsec_i;
117  ldns_rr *nsec;
118  ldns_rdf *result = NULL;
119 
120  if (!qname || !nsec3s || ldns_rr_list_rr_count(nsec3s) < 1) {
121  return NULL;
122  }
123 
124  nsec = ldns_rr_list_rr(nsec3s, 0);
125  algorithm = ldns_nsec3_algorithm(nsec);
126  salt_length = ldns_nsec3_salt_length(nsec);
127  salt = ldns_nsec3_salt_data(nsec);
128  iterations = ldns_nsec3_iterations(nsec);
129 
130  sname = ldns_rdf_clone(qname);
131 
132  flag = false;
133 
134  zone_name = ldns_dname_left_chop(ldns_rr_owner(nsec));
135 
136  /* algorithm from nsec3-07 8.3 */
137  while (ldns_dname_label_count(sname) > 0) {
138  exact_match_found = false;
139  in_range_found = false;
140 
141  hashed_sname = ldns_nsec3_hash_name(sname,
142  algorithm,
143  iterations,
144  salt_length,
145  salt);
146 
147  status = ldns_dname_cat(hashed_sname, zone_name);
148  if(status != LDNS_STATUS_OK) {
149  LDNS_FREE(salt);
150  ldns_rdf_deep_free(zone_name);
151  ldns_rdf_deep_free(sname);
152  return NULL;
153  }
154 
155  for (nsec_i = 0; nsec_i < ldns_rr_list_rr_count(nsec3s); nsec_i++) {
156  nsec = ldns_rr_list_rr(nsec3s, nsec_i);
157 
158  /* check values of iterations etc! */
159 
160  /* exact match? */
161  if (ldns_dname_compare(ldns_rr_owner(nsec), hashed_sname) == 0) {
162  exact_match_found = true;
163  } else if (ldns_nsec_covers_name(nsec, hashed_sname)) {
164  in_range_found = true;
165  }
166 
167  }
168  if (!exact_match_found && in_range_found) {
169  flag = true;
170  } else if (exact_match_found && flag) {
171  result = ldns_rdf_clone(sname);
172  /* RFC 5155: 8.3. 2.** "The proof is complete" */
173  ldns_rdf_deep_free(hashed_sname);
174  goto done;
175  } else if (exact_match_found && !flag) {
176  /* error! */
177  ldns_rdf_deep_free(hashed_sname);
178  goto done;
179  } else {
180  flag = false;
181  }
182 
183  ldns_rdf_deep_free(hashed_sname);
184  tmp = sname;
185  sname = ldns_dname_left_chop(sname);
186  ldns_rdf_deep_free(tmp);
187  }
188 
189  done:
190  LDNS_FREE(salt);
191  ldns_rdf_deep_free(zone_name);
192  ldns_rdf_deep_free(sname);
193 
194  return result;
195 }
196 
197 bool
199 {
200  size_t i;
201  for (i = 0; i < ldns_pkt_ancount(pkt); i++) {
204  return true;
205  }
206  }
207  for (i = 0; i < ldns_pkt_nscount(pkt); i++) {
210  return true;
211  }
212  }
213  return false;
214 }
215 
216 ldns_rr_list *
218  ldns_rdf *name,
219  ldns_rr_type type)
220 {
221  uint16_t t_netorder;
222  ldns_rr_list *sigs;
223  ldns_rr_list *sigs_covered;
224  ldns_rdf *rdf_t;
225 
227  name,
230  );
231 
232  t_netorder = htons(type); /* rdf are in network order! */
233  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, LDNS_RDF_SIZE_WORD, &t_netorder);
234  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
235 
236  ldns_rdf_free(rdf_t);
238 
239  return sigs_covered;
240 
241 }
242 
243 ldns_rr_list *
245 {
246  uint16_t t_netorder;
247  ldns_rr_list *sigs;
248  ldns_rr_list *sigs_covered;
249  ldns_rdf *rdf_t;
250 
251  sigs = ldns_pkt_rr_list_by_type(pkt,
254  );
255 
256  t_netorder = htons(type); /* rdf are in network order! */
258  2,
259  &t_netorder);
260  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
261 
262  ldns_rdf_free(rdf_t);
264 
265  return sigs_covered;
266 
267 }
268 
269 /* used only on the public key RR */
270 uint16_t
272 {
273  uint16_t ac16;
274  ldns_buffer *keybuf;
275  size_t keysize;
276 
277  if (!key) {
278  return 0;
279  }
280 
283  ) {
284  return 0;
285  }
286 
287  /* rdata to buf - only put the rdata in a buffer */
288  keybuf = ldns_buffer_new(LDNS_MIN_BUFLEN); /* grows */
289  if (!keybuf) {
290  return 0;
291  }
292  (void)ldns_rr_rdata2buffer_wire(keybuf, key);
293  /* the current pos in the buffer is the keysize */
294  keysize= ldns_buffer_position(keybuf);
295 
296  ac16 = ldns_calc_keytag_raw(ldns_buffer_begin(keybuf), keysize);
297  ldns_buffer_free(keybuf);
298  return ac16;
299 }
300 
301 uint16_t ldns_calc_keytag_raw(uint8_t* key, size_t keysize)
302 {
303  unsigned int i;
304  uint32_t ac32;
305  uint16_t ac16;
306 
307  if(keysize < 4) {
308  return 0;
309  }
310  /* look at the algorithm field, copied from 2535bis */
311  if (key[3] == LDNS_RSAMD5) {
312  ac16 = 0;
313  if (keysize > 4) {
314  memmove(&ac16, key + keysize - 3, 2);
315  }
316  ac16 = ntohs(ac16);
317  return (uint16_t) ac16;
318  } else {
319  ac32 = 0;
320  for (i = 0; (size_t)i < keysize; ++i) {
321  ac32 += (i & 1) ? key[i] : key[i] << 8;
322  }
323  ac32 += (ac32 >> 16) & 0xFFFF;
324  return (uint16_t) (ac32 & 0xFFFF);
325  }
326 }
327 
328 #ifdef HAVE_SSL
329 DSA *
331 {
332  return ldns_key_buf2dsa_raw((unsigned char*)ldns_buffer_begin(key),
333  ldns_buffer_position(key));
334 }
335 
336 DSA *
337 ldns_key_buf2dsa_raw(unsigned char* key, size_t len)
338 {
339  uint8_t T;
340  uint16_t length;
341  uint16_t offset;
342  DSA *dsa;
343  BIGNUM *Q; BIGNUM *P;
344  BIGNUM *G; BIGNUM *Y;
345 
346  if(len == 0)
347  return NULL;
348  T = (uint8_t)key[0];
349  length = (64 + T * 8);
350  offset = 1;
351 
352  if (T > 8) {
353  return NULL;
354  }
355  if(len < (size_t)1 + SHA_DIGEST_LENGTH + 3*length)
356  return NULL;
357 
358  Q = BN_bin2bn(key+offset, SHA_DIGEST_LENGTH, NULL);
359  offset += SHA_DIGEST_LENGTH;
360 
361  P = BN_bin2bn(key+offset, (int)length, NULL);
362  offset += length;
363 
364  G = BN_bin2bn(key+offset, (int)length, NULL);
365  offset += length;
366 
367  Y = BN_bin2bn(key+offset, (int)length, NULL);
368  offset += length;
369 
370  /* create the key and set its properties */
371  if(!Q || !P || !G || !Y || !(dsa = DSA_new())) {
372  BN_free(Q);
373  BN_free(P);
374  BN_free(G);
375  BN_free(Y);
376  return NULL;
377  }
378 #ifndef S_SPLINT_S
379  dsa->p = P;
380  dsa->q = Q;
381  dsa->g = G;
382  dsa->pub_key = Y;
383 #endif /* splint */
384 
385  return dsa;
386 }
387 
388 RSA *
390 {
391  return ldns_key_buf2rsa_raw((unsigned char*)ldns_buffer_begin(key),
392  ldns_buffer_position(key));
393 }
394 
395 RSA *
396 ldns_key_buf2rsa_raw(unsigned char* key, size_t len)
397 {
398  uint16_t offset;
399  uint16_t exp;
400  uint16_t int16;
401  RSA *rsa;
402  BIGNUM *modulus;
403  BIGNUM *exponent;
404 
405  if (len == 0)
406  return NULL;
407  if (key[0] == 0) {
408  if(len < 3)
409  return NULL;
410  /* need some smart comment here XXX*/
411  /* the exponent is too large so it's places
412  * futher...???? */
413  memmove(&int16, key+1, 2);
414  exp = ntohs(int16);
415  offset = 3;
416  } else {
417  exp = key[0];
418  offset = 1;
419  }
420 
421  /* key length at least one */
422  if(len < (size_t)offset + exp + 1)
423  return NULL;
424 
425  /* Exponent */
426  exponent = BN_new();
427  if(!exponent) return NULL;
428  (void) BN_bin2bn(key+offset, (int)exp, exponent);
429  offset += exp;
430 
431  /* Modulus */
432  modulus = BN_new();
433  if(!modulus) {
434  BN_free(exponent);
435  return NULL;
436  }
437  /* length of the buffer must match the key length! */
438  (void) BN_bin2bn(key+offset, (int)(len - offset), modulus);
439 
440  rsa = RSA_new();
441  if(!rsa) {
442  BN_free(exponent);
443  BN_free(modulus);
444  return NULL;
445  }
446 #ifndef S_SPLINT_S
447  rsa->n = modulus;
448  rsa->e = exponent;
449 #endif /* splint */
450 
451  return rsa;
452 }
453 
454 int
455 ldns_digest_evp(unsigned char* data, unsigned int len, unsigned char* dest,
456  const EVP_MD* md)
457 {
458  EVP_MD_CTX* ctx;
459  ctx = EVP_MD_CTX_create();
460  if(!ctx)
461  return false;
462  if(!EVP_DigestInit_ex(ctx, md, NULL) ||
463  !EVP_DigestUpdate(ctx, data, len) ||
464  !EVP_DigestFinal_ex(ctx, dest, NULL)) {
465  EVP_MD_CTX_destroy(ctx);
466  return false;
467  }
468  EVP_MD_CTX_destroy(ctx);
469  return true;
470 }
471 #endif /* HAVE_SSL */
472 
473 ldns_rr *
475 {
476  ldns_rdf *tmp;
477  ldns_rr *ds;
478  uint16_t keytag;
479  uint8_t sha1hash;
480  uint8_t *digest;
481  ldns_buffer *data_buf;
482 #ifdef USE_GOST
483  const EVP_MD* md = NULL;
484 #endif
485 
487  return NULL;
488  }
489 
490  ds = ldns_rr_new();
491  if (!ds) {
492  return NULL;
493  }
496  ldns_rr_owner(key)));
497  ldns_rr_set_ttl(ds, ldns_rr_ttl(key));
499 
500  switch(h) {
501  default:
502  case LDNS_SHA1:
503  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA1_DIGEST_LENGTH);
504  if (!digest) {
505  ldns_rr_free(ds);
506  return NULL;
507  }
508  break;
509  case LDNS_SHA256:
510  digest = LDNS_XMALLOC(uint8_t, LDNS_SHA256_DIGEST_LENGTH);
511  if (!digest) {
512  ldns_rr_free(ds);
513  return NULL;
514  }
515  break;
516  case LDNS_HASH_GOST:
517 #ifdef USE_GOST
519  md = EVP_get_digestbyname("md_gost94");
520  if(!md) {
521  ldns_rr_free(ds);
522  return NULL;
523  }
524  digest = LDNS_XMALLOC(uint8_t, EVP_MD_size(md));
525  if (!digest) {
526  ldns_rr_free(ds);
527  return NULL;
528  }
529  break;
530 #else
531  /* not implemented */
532  ldns_rr_free(ds);
533  return NULL;
534 #endif
535  case LDNS_SHA384:
536 #ifdef USE_ECDSA
537  digest = LDNS_XMALLOC(uint8_t, SHA384_DIGEST_LENGTH);
538  if (!digest) {
539  ldns_rr_free(ds);
540  return NULL;
541  }
542  break;
543 #else
544  /* not implemented */
545  ldns_rr_free(ds);
546  return NULL;
547 #endif
548  }
549 
551  if (!data_buf) {
552  LDNS_FREE(digest);
553  ldns_rr_free(ds);
554  return NULL;
555  }
556 
557  /* keytag */
558  keytag = htons(ldns_calc_keytag((ldns_rr*)key));
560  sizeof(uint16_t),
561  &keytag);
562  ldns_rr_push_rdf(ds, tmp);
563 
564  /* copy the algorithm field */
565  if ((tmp = ldns_rr_rdf(key, 2)) == NULL) {
566  LDNS_FREE(digest);
567  ldns_buffer_free(data_buf);
568  ldns_rr_free(ds);
569  return NULL;
570  } else {
571  ldns_rr_push_rdf(ds, ldns_rdf_clone( tmp ));
572  }
573 
574  /* digest hash type */
575  sha1hash = (uint8_t)h;
577  sizeof(uint8_t),
578  &sha1hash);
579  ldns_rr_push_rdf(ds, tmp);
580 
581  /* digest */
582  /* owner name */
583  tmp = ldns_rdf_clone(ldns_rr_owner(key));
585  if (ldns_rdf2buffer_wire(data_buf, tmp) != LDNS_STATUS_OK) {
586  LDNS_FREE(digest);
587  ldns_buffer_free(data_buf);
588  ldns_rr_free(ds);
589  ldns_rdf_deep_free(tmp);
590  return NULL;
591  }
592  ldns_rdf_deep_free(tmp);
593 
594  /* all the rdata's */
595  if (ldns_rr_rdata2buffer_wire(data_buf,
596  (ldns_rr*)key) != LDNS_STATUS_OK) {
597  LDNS_FREE(digest);
598  ldns_buffer_free(data_buf);
599  ldns_rr_free(ds);
600  return NULL;
601  }
602  switch(h) {
603  case LDNS_SHA1:
604  (void) ldns_sha1((unsigned char *) ldns_buffer_begin(data_buf),
605  (unsigned int) ldns_buffer_position(data_buf),
606  (unsigned char *) digest);
607 
610  digest);
611  ldns_rr_push_rdf(ds, tmp);
612 
613  break;
614  case LDNS_SHA256:
615  (void) ldns_sha256((unsigned char *) ldns_buffer_begin(data_buf),
616  (unsigned int) ldns_buffer_position(data_buf),
617  (unsigned char *) digest);
620  digest);
621  ldns_rr_push_rdf(ds, tmp);
622  break;
623  case LDNS_HASH_GOST:
624 #ifdef USE_GOST
625  if(!ldns_digest_evp((unsigned char *) ldns_buffer_begin(data_buf),
626  (unsigned int) ldns_buffer_position(data_buf),
627  (unsigned char *) digest, md)) {
628  LDNS_FREE(digest);
629  ldns_buffer_free(data_buf);
630  ldns_rr_free(ds);
631  return NULL;
632  }
634  (size_t)EVP_MD_size(md),
635  digest);
636  ldns_rr_push_rdf(ds, tmp);
637 #endif
638  break;
639  case LDNS_SHA384:
640 #ifdef USE_ECDSA
641  (void) SHA384((unsigned char *) ldns_buffer_begin(data_buf),
642  (unsigned int) ldns_buffer_position(data_buf),
643  (unsigned char *) digest);
645  SHA384_DIGEST_LENGTH,
646  digest);
647  ldns_rr_push_rdf(ds, tmp);
648 #endif
649  break;
650  }
651 
652  LDNS_FREE(digest);
653  ldns_buffer_free(data_buf);
654  return ds;
655 }
656 
657 ldns_rdf *
659  size_t size,
660  ldns_rr_type nsec_type)
661 {
662  size_t i;
663  uint8_t *bitmap;
664  uint16_t bm_len = 0;
665  uint16_t i_type;
666  ldns_rdf *bitmap_rdf;
667 
668  uint8_t *data = NULL;
669  uint8_t cur_data[32];
670  uint8_t cur_window = 0;
671  uint8_t cur_window_max = 0;
672  uint16_t cur_data_size = 0;
673 
674  if (nsec_type != LDNS_RR_TYPE_NSEC &&
675  nsec_type != LDNS_RR_TYPE_NSEC3) {
676  return NULL;
677  }
678 
679  i_type = 0;
680  for (i = 0; i < size; i++) {
681  if (i_type < rr_type_list[i])
682  i_type = rr_type_list[i];
683  }
684  if (i_type < nsec_type) {
685  i_type = nsec_type;
686  }
687 
688  bm_len = i_type / 8 + 2;
689  bitmap = LDNS_XMALLOC(uint8_t, bm_len);
690  if(!bitmap) return NULL;
691  for (i = 0; i < bm_len; i++) {
692  bitmap[i] = 0;
693  }
694 
695  for (i = 0; i < size; i++) {
696  i_type = rr_type_list[i];
697  ldns_set_bit(bitmap + (int) i_type / 8,
698  (int) (7 - (i_type % 8)),
699  true);
700  }
701 
702  /* fold it into windows TODO: can this be done directly? */
703  memset(cur_data, 0, 32);
704  for (i = 0; i < bm_len; i++) {
705  if (i / 32 > cur_window) {
706  /* check, copy, new */
707  if (cur_window_max > 0) {
708  /* this window has stuff, add it */
709  data = LDNS_XREALLOC(data,
710  uint8_t,
711  cur_data_size + cur_window_max + 3);
712  if(!data) {
713  LDNS_FREE(bitmap);
714  return NULL;
715  }
716  data[cur_data_size] = cur_window;
717  data[cur_data_size + 1] = cur_window_max + 1;
718  memcpy(data + cur_data_size + 2,
719  cur_data,
720  cur_window_max+1);
721  cur_data_size += cur_window_max + 3;
722  }
723  cur_window++;
724  cur_window_max = 0;
725  memset(cur_data, 0, 32);
726  }
727  cur_data[i%32] = bitmap[i];
728  if (bitmap[i] > 0) {
729  cur_window_max = i%32;
730  }
731  }
732  if (cur_window_max > 0 || cur_data[0] != 0) {
733  /* this window has stuff, add it */
734  data = LDNS_XREALLOC(data,
735  uint8_t,
736  cur_data_size + cur_window_max + 3);
737  if(!data) {
738  LDNS_FREE(bitmap);
739  return NULL;
740  }
741  data[cur_data_size] = cur_window;
742  data[cur_data_size + 1] = cur_window_max + 1;
743  memcpy(data + cur_data_size + 2, cur_data, cur_window_max+1);
744  cur_data_size += cur_window_max + 3;
745  }
747  cur_data_size,
748  data);
749 
750  LDNS_FREE(bitmap);
751  LDNS_FREE(data);
752 
753  return bitmap_rdf;
754 }
755 
756 int
758  ldns_rr_type type)
759 {
760  ldns_dnssec_rrsets *cur_rrset = rrsets;
761  while (cur_rrset) {
762  if (cur_rrset->type == type) {
763  return 1;
764  }
765  cur_rrset = cur_rrset->next;
766  }
767  return 0;
768 }
769 
770 ldns_rr *
772  ldns_dnssec_name *to,
773  ldns_rr_type nsec_type)
774 {
775  ldns_rr *nsec_rr;
776  ldns_rr_type types[65536];
777  size_t type_count = 0;
778  ldns_dnssec_rrsets *cur_rrsets;
779  int on_delegation_point;
780 
781  if (!from || !to || (nsec_type != LDNS_RR_TYPE_NSEC)) {
782  return NULL;
783  }
784 
785  nsec_rr = ldns_rr_new();
786  ldns_rr_set_type(nsec_rr, nsec_type);
789 
790  on_delegation_point = ldns_dnssec_rrsets_contains_type(
791  from->rrsets, LDNS_RR_TYPE_NS)
793  from->rrsets, LDNS_RR_TYPE_SOA);
794 
795  cur_rrsets = from->rrsets;
796  while (cur_rrsets) {
797  /* Do not include non-authoritative rrsets on the delegation point
798  * in the type bitmap */
799  if ((on_delegation_point && (
800  cur_rrsets->type == LDNS_RR_TYPE_NS
801  || cur_rrsets->type == LDNS_RR_TYPE_DS))
802  || (!on_delegation_point &&
803  cur_rrsets->type != LDNS_RR_TYPE_RRSIG
804  && cur_rrsets->type != LDNS_RR_TYPE_NSEC)) {
805 
806  types[type_count] = cur_rrsets->type;
807  type_count++;
808  }
809  cur_rrsets = cur_rrsets->next;
810 
811  }
812  types[type_count] = LDNS_RR_TYPE_RRSIG;
813  type_count++;
814  types[type_count] = LDNS_RR_TYPE_NSEC;
815  type_count++;
816 
818  type_count,
819  nsec_type));
820 
821  return nsec_rr;
822 }
823 
824 ldns_rr *
826  ldns_dnssec_name *to,
827  ldns_rdf *zone_name,
828  uint8_t algorithm,
829  uint8_t flags,
830  uint16_t iterations,
831  uint8_t salt_length,
832  uint8_t *salt)
833 {
834  ldns_rr *nsec_rr;
835  ldns_rr_type types[65536];
836  size_t type_count = 0;
837  ldns_dnssec_rrsets *cur_rrsets;
838  ldns_status status;
839  int on_delegation_point;
840 
841  if (!from) {
842  return NULL;
843  }
844 
846  ldns_rr_set_owner(nsec_rr,
848  algorithm,
849  iterations,
850  salt_length,
851  salt));
852  status = ldns_dname_cat(ldns_rr_owner(nsec_rr), zone_name);
853  if(status != LDNS_STATUS_OK) {
854  ldns_rr_free(nsec_rr);
855  return NULL;
856  }
858  algorithm,
859  flags,
860  iterations,
861  salt_length,
862  salt);
863 
864  on_delegation_point = ldns_dnssec_rrsets_contains_type(
865  from->rrsets, LDNS_RR_TYPE_NS)
867  from->rrsets, LDNS_RR_TYPE_SOA);
868  cur_rrsets = from->rrsets;
869  while (cur_rrsets) {
870  /* Do not include non-authoritative rrsets on the delegation point
871  * in the type bitmap. Potentionally not skipping insecure
872  * delegation should have been done earlier, in function
873  * ldns_dnssec_zone_create_nsec3s, or even earlier in:
874  * ldns_dnssec_zone_sign_nsec3_flg .
875  */
876  if ((on_delegation_point && (
877  cur_rrsets->type == LDNS_RR_TYPE_NS
878  || cur_rrsets->type == LDNS_RR_TYPE_DS))
879  || (!on_delegation_point &&
880  cur_rrsets->type != LDNS_RR_TYPE_RRSIG)) {
881 
882  types[type_count] = cur_rrsets->type;
883  type_count++;
884  }
885  cur_rrsets = cur_rrsets->next;
886  }
887  /* always add rrsig type if this is not an unsigned
888  * delegation
889  */
890  if (type_count > 0 &&
891  !(type_count == 1 && types[0] == LDNS_RR_TYPE_NS)) {
892  types[type_count] = LDNS_RR_TYPE_RRSIG;
893  type_count++;
894  }
895 
896  /* leave next rdata empty if they weren't precomputed yet */
897  if (to && to->hashed_name) {
898  (void) ldns_rr_set_rdf(nsec_rr,
900  4);
901  } else {
902  (void) ldns_rr_set_rdf(nsec_rr, NULL, 4);
903  }
904 
905  ldns_rr_push_rdf(nsec_rr,
907  type_count,
909 
910  return nsec_rr;
911 }
912 
913 ldns_rr *
914 ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
915 {
916  /* we do not do any check here - garbage in, garbage out */
917 
918  /* the the start and end names - get the type from the
919  * before rrlist */
920 
921  /* inefficient, just give it a name, a next name, and a list of rrs */
922  /* we make 1 big uberbitmap first, then windows */
923  /* todo: make something more efficient :) */
924  uint16_t i;
925  ldns_rr *i_rr;
926  uint16_t i_type;
927 
928  ldns_rr *nsec = NULL;
929  ldns_rr_type i_type_list[65536];
930  size_t type_count = 0;
931 
932  nsec = ldns_rr_new();
934  ldns_rr_set_owner(nsec, ldns_rdf_clone(cur_owner));
935  ldns_rr_push_rdf(nsec, ldns_rdf_clone(next_owner));
936 
937  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
938  i_rr = ldns_rr_list_rr(rrs, i);
939  if (ldns_rdf_compare(cur_owner,
940  ldns_rr_owner(i_rr)) == 0) {
941  i_type = ldns_rr_get_type(i_rr);
942  if (i_type != LDNS_RR_TYPE_RRSIG && i_type != LDNS_RR_TYPE_NSEC) {
943  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
944  i_type_list[type_count] = i_type;
945  type_count++;
946  }
947  }
948  }
949  }
950 
951  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
952  type_count++;
953  i_type_list[type_count] = LDNS_RR_TYPE_NSEC;
954  type_count++;
955 
956  ldns_rr_push_rdf(nsec,
957  ldns_dnssec_create_nsec_bitmap(i_type_list,
958  type_count, LDNS_RR_TYPE_NSEC));
959 
960  return nsec;
961 }
962 
963 ldns_rdf *
965  uint8_t algorithm,
966  uint16_t iterations,
967  uint8_t salt_length,
968  uint8_t *salt)
969 {
970  size_t hashed_owner_str_len;
971  ldns_rdf *cann;
972  ldns_rdf *hashed_owner;
973  unsigned char *hashed_owner_str;
974  char *hashed_owner_b32;
975  size_t hashed_owner_b32_len;
976  uint32_t cur_it;
977  /* define to contain the largest possible hash, which is
978  * sha1 at the moment */
979  unsigned char hash[LDNS_SHA1_DIGEST_LENGTH];
980  ldns_status status;
981 
982  /* TODO: mnemonic list for hash algs SHA-1, default to 1 now (sha1) */
983  if (algorithm != LDNS_SHA1) {
984  return NULL;
985  }
986 
987  /* prepare the owner name according to the draft section bla */
988  cann = ldns_rdf_clone(name);
989  if(!cann) {
990  fprintf(stderr, "Memory error\n");
991  return NULL;
992  }
993  ldns_dname2canonical(cann);
994 
995  hashed_owner_str_len = salt_length + ldns_rdf_size(cann);
996  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
997  if(!hashed_owner_str) {
998  ldns_rdf_deep_free(cann);
999  return NULL;
1000  }
1001  memcpy(hashed_owner_str, ldns_rdf_data(cann), ldns_rdf_size(cann));
1002  memcpy(hashed_owner_str + ldns_rdf_size(cann), salt, salt_length);
1003  ldns_rdf_deep_free(cann);
1004 
1005  for (cur_it = iterations + 1; cur_it > 0; cur_it--) {
1006  (void) ldns_sha1((unsigned char *) hashed_owner_str,
1007  (unsigned int) hashed_owner_str_len, hash);
1008 
1009  LDNS_FREE(hashed_owner_str);
1010  hashed_owner_str_len = salt_length + LDNS_SHA1_DIGEST_LENGTH;
1011  hashed_owner_str = LDNS_XMALLOC(unsigned char, hashed_owner_str_len);
1012  if (!hashed_owner_str) {
1013  return NULL;
1014  }
1015  memcpy(hashed_owner_str, hash, LDNS_SHA1_DIGEST_LENGTH);
1016  memcpy(hashed_owner_str + LDNS_SHA1_DIGEST_LENGTH, salt, salt_length);
1017  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH + salt_length;
1018  }
1019 
1020  LDNS_FREE(hashed_owner_str);
1021  hashed_owner_str = hash;
1022  hashed_owner_str_len = LDNS_SHA1_DIGEST_LENGTH;
1023 
1024  hashed_owner_b32 = LDNS_XMALLOC(char,
1025  ldns_b32_ntop_calculate_size(hashed_owner_str_len) + 1);
1026  if(!hashed_owner_b32) {
1027  return NULL;
1028  }
1029  hashed_owner_b32_len = (size_t) ldns_b32_ntop_extended_hex(
1030  (uint8_t *) hashed_owner_str,
1031  hashed_owner_str_len,
1032  hashed_owner_b32,
1033  ldns_b32_ntop_calculate_size(hashed_owner_str_len)+1);
1034  if (hashed_owner_b32_len < 1) {
1035  fprintf(stderr, "Error in base32 extended hex encoding ");
1036  fprintf(stderr, "of hashed owner name (name: ");
1037  ldns_rdf_print(stderr, name);
1038  fprintf(stderr, ", return code: %u)\n",
1039  (unsigned int) hashed_owner_b32_len);
1040  LDNS_FREE(hashed_owner_b32);
1041  return NULL;
1042  }
1043  hashed_owner_b32[hashed_owner_b32_len] = '\0';
1044 
1045  status = ldns_str2rdf_dname(&hashed_owner, hashed_owner_b32);
1046  if (status != LDNS_STATUS_OK) {
1047  fprintf(stderr, "Error creating rdf from %s\n", hashed_owner_b32);
1048  LDNS_FREE(hashed_owner_b32);
1049  return NULL;
1050  }
1051 
1052  LDNS_FREE(hashed_owner_b32);
1053  return hashed_owner;
1054 }
1055 
1056 void
1058  uint8_t algorithm,
1059  uint8_t flags,
1060  uint16_t iterations,
1061  uint8_t salt_length,
1062  uint8_t *salt)
1063 {
1064  ldns_rdf *salt_rdf = NULL;
1065  uint8_t *salt_data = NULL;
1066  ldns_rdf *old;
1067 
1068  old = ldns_rr_set_rdf(rr,
1070  1, (void*)&algorithm),
1071  0);
1072  if (old) ldns_rdf_deep_free(old);
1073 
1074  old = ldns_rr_set_rdf(rr,
1076  1, (void*)&flags),
1077  1);
1078  if (old) ldns_rdf_deep_free(old);
1079 
1080  old = ldns_rr_set_rdf(rr,
1082  iterations),
1083  2);
1084  if (old) ldns_rdf_deep_free(old);
1085 
1086  salt_data = LDNS_XMALLOC(uint8_t, salt_length + 1);
1087  if(!salt_data) {
1088  /* no way to return error */
1089  return;
1090  }
1091  salt_data[0] = salt_length;
1092  memcpy(salt_data + 1, salt, salt_length);
1094  salt_length + 1,
1095  salt_data);
1096  if(!salt_rdf) {
1097  LDNS_FREE(salt_data);
1098  /* no way to return error */
1099  return;
1100  }
1101 
1102  old = ldns_rr_set_rdf(rr, salt_rdf, 3);
1103  if (old) ldns_rdf_deep_free(old);
1104  LDNS_FREE(salt_data);
1105 }
1106 
1107 static int
1108 rr_list_delegation_only(ldns_rdf *origin, ldns_rr_list *rr_list)
1109 {
1110  size_t i;
1111  ldns_rr *cur_rr;
1112  if (!origin || !rr_list) return 0;
1113  for (i = 0; i < ldns_rr_list_rr_count(rr_list); i++) {
1114  cur_rr = ldns_rr_list_rr(rr_list, i);
1115  if (ldns_dname_compare(ldns_rr_owner(cur_rr), origin) == 0) {
1116  return 0;
1117  }
1118  if (ldns_rr_get_type(cur_rr) != LDNS_RR_TYPE_NS) {
1119  return 0;
1120  }
1121  }
1122  return 1;
1123 }
1124 
1125 /* this will NOT return the NSEC3 completed, you will have to run the
1126  finalize function on the rrlist later! */
1127 ldns_rr *
1129  ldns_rdf *cur_zone,
1130  ldns_rr_list *rrs,
1131  uint8_t algorithm,
1132  uint8_t flags,
1133  uint16_t iterations,
1134  uint8_t salt_length,
1135  uint8_t *salt,
1136  bool emptynonterminal)
1137 {
1138  size_t i;
1139  ldns_rr *i_rr;
1140  uint16_t i_type;
1141 
1142  ldns_rr *nsec = NULL;
1143  ldns_rdf *hashed_owner = NULL;
1144 
1145  ldns_status status;
1146 
1147  ldns_rr_type i_type_list[1024];
1148  size_t type_count = 0;
1149 
1150  hashed_owner = ldns_nsec3_hash_name(cur_owner,
1151  algorithm,
1152  iterations,
1153  salt_length,
1154  salt);
1155  status = ldns_dname_cat(hashed_owner, cur_zone);
1156  if(status != LDNS_STATUS_OK) {
1157  ldns_rdf_deep_free(hashed_owner);
1158  return NULL;
1159  }
1161  if(!nsec) {
1162  ldns_rdf_deep_free(hashed_owner);
1163  return NULL;
1164  }
1166  ldns_rr_set_owner(nsec, hashed_owner);
1167 
1169  algorithm,
1170  flags,
1171  iterations,
1172  salt_length,
1173  salt);
1174  (void) ldns_rr_set_rdf(nsec, NULL, 4);
1175 
1176 
1177  for (i = 0; i < ldns_rr_list_rr_count(rrs); i++) {
1178  i_rr = ldns_rr_list_rr(rrs, i);
1179  if (ldns_rdf_compare(cur_owner,
1180  ldns_rr_owner(i_rr)) == 0) {
1181  i_type = ldns_rr_get_type(i_rr);
1182  if (type_count == 0 || i_type_list[type_count-1] != i_type) {
1183  i_type_list[type_count] = i_type;
1184  type_count++;
1185  }
1186  }
1187  }
1188 
1189  /* add RRSIG anyway, but only if this is not an ENT or
1190  * an unsigned delegation */
1191  if (!emptynonterminal && !rr_list_delegation_only(cur_zone, rrs)) {
1192  i_type_list[type_count] = LDNS_RR_TYPE_RRSIG;
1193  type_count++;
1194  }
1195 
1196  /* and SOA if owner == zone */
1197  if (ldns_dname_compare(cur_zone, cur_owner) == 0) {
1198  i_type_list[type_count] = LDNS_RR_TYPE_SOA;
1199  type_count++;
1200  }
1201 
1202  ldns_rr_push_rdf(nsec,
1203  ldns_dnssec_create_nsec_bitmap(i_type_list,
1204  type_count, LDNS_RR_TYPE_NSEC3));
1205 
1206  return nsec;
1207 }
1208 
1209 uint8_t
1211 {
1212  if (nsec3_rr &&
1213  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1215  && (ldns_rr_rdf(nsec3_rr, 0) != NULL)
1216  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 0)) > 0) {
1217  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 0));
1218  }
1219  return 0;
1220 }
1221 
1222 uint8_t
1223 ldns_nsec3_flags(const ldns_rr *nsec3_rr)
1224 {
1225  if (nsec3_rr &&
1226  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1228  && (ldns_rr_rdf(nsec3_rr, 1) != NULL)
1229  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 1)) > 0) {
1230  return ldns_rdf2native_int8(ldns_rr_rdf(nsec3_rr, 1));
1231  }
1232  return 0;
1233 }
1234 
1235 bool
1236 ldns_nsec3_optout(const ldns_rr *nsec3_rr)
1237 {
1238  return (ldns_nsec3_flags(nsec3_rr) & LDNS_NSEC3_VARS_OPTOUT_MASK);
1239 }
1240 
1241 uint16_t
1243 {
1244  if (nsec3_rr &&
1245  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1247  && (ldns_rr_rdf(nsec3_rr, 2) != NULL)
1248  && ldns_rdf_size(ldns_rr_rdf(nsec3_rr, 2)) > 0) {
1249  return ldns_rdf2native_int16(ldns_rr_rdf(nsec3_rr, 2));
1250  }
1251  return 0;
1252 
1253 }
1254 
1255 ldns_rdf *
1256 ldns_nsec3_salt(const ldns_rr *nsec3_rr)
1257 {
1258  if (nsec3_rr &&
1259  (ldns_rr_get_type(nsec3_rr) == LDNS_RR_TYPE_NSEC3 ||
1261  ) {
1262  return ldns_rr_rdf(nsec3_rr, 3);
1263  }
1264  return NULL;
1265 }
1266 
1267 uint8_t
1269 {
1270  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1271  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1272  return (uint8_t) ldns_rdf_data(salt_rdf)[0];
1273  }
1274  return 0;
1275 }
1276 
1277 /* allocs data, free with LDNS_FREE() */
1278 uint8_t *
1280 {
1281  uint8_t salt_length;
1282  uint8_t *salt;
1283 
1284  ldns_rdf *salt_rdf = ldns_nsec3_salt(nsec3_rr);
1285  if (salt_rdf && ldns_rdf_size(salt_rdf) > 0) {
1286  salt_length = ldns_rdf_data(salt_rdf)[0];
1287  salt = LDNS_XMALLOC(uint8_t, salt_length);
1288  if(!salt) return NULL;
1289  memcpy(salt, &ldns_rdf_data(salt_rdf)[1], salt_length);
1290  return salt;
1291  }
1292  return NULL;
1293 }
1294 
1295 ldns_rdf *
1297 {
1298  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1299  return NULL;
1300  } else {
1301  return ldns_rr_rdf(nsec3_rr, 4);
1302  }
1303 }
1304 
1305 ldns_rdf *
1306 ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
1307 {
1308  if (!nsec3_rr || ldns_rr_get_type(nsec3_rr) != LDNS_RR_TYPE_NSEC3) {
1309  return NULL;
1310  } else {
1311  return ldns_rr_rdf(nsec3_rr, 5);
1312  }
1313 }
1314 
1315 ldns_rdf *
1317 {
1318  uint8_t algorithm;
1319  uint16_t iterations;
1320  uint8_t salt_length;
1321  uint8_t *salt = 0;
1322 
1323  ldns_rdf *hashed_owner;
1324 
1325  algorithm = ldns_nsec3_algorithm(nsec);
1326  salt_length = ldns_nsec3_salt_length(nsec);
1327  salt = ldns_nsec3_salt_data(nsec);
1328  iterations = ldns_nsec3_iterations(nsec);
1329 
1330  hashed_owner = ldns_nsec3_hash_name(name,
1331  algorithm,
1332  iterations,
1333  salt_length,
1334  salt);
1335 
1336  LDNS_FREE(salt);
1337  return hashed_owner;
1338 }
1339 
1340 bool
1342 {
1343  uint8_t window_block_nr;
1344  uint8_t bitmap_length;
1345  uint16_t cur_type;
1346  uint16_t pos = 0;
1347  uint16_t bit_pos;
1348  uint8_t *data;
1349 
1350  if (nsec_bitmap == NULL) {
1351  return false;
1352  }
1353  data = ldns_rdf_data(nsec_bitmap);
1354  while(pos < ldns_rdf_size(nsec_bitmap)) {
1355  window_block_nr = data[pos];
1356  bitmap_length = data[pos + 1];
1357  pos += 2;
1358 
1359  for (bit_pos = 0; bit_pos < (bitmap_length) * 8; bit_pos++) {
1360  if (ldns_get_bit(&data[pos], bit_pos)) {
1361  cur_type = 256 * (uint16_t) window_block_nr + bit_pos;
1362  if (cur_type == type) {
1363  return true;
1364  }
1365  }
1366  }
1367 
1368  pos += (uint16_t) bitmap_length;
1369  }
1370  return false;
1371 }
1372 
1373 bool
1374 ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
1375 {
1376  ldns_rdf *nsec_owner = ldns_rr_owner(nsec);
1377  ldns_rdf *hash_next;
1378  char *next_hash_str;
1379  ldns_rdf *nsec_next = NULL;
1380  ldns_status status;
1381  ldns_rdf *chopped_dname;
1382  bool result;
1383 
1384  if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC) {
1385  if (ldns_rr_rdf(nsec, 0) != NULL) {
1386  nsec_next = ldns_rdf_clone(ldns_rr_rdf(nsec, 0));
1387  } else {
1388  return false;
1389  }
1390  } else if (ldns_rr_get_type(nsec) == LDNS_RR_TYPE_NSEC3) {
1391  hash_next = ldns_nsec3_next_owner(nsec);
1392  next_hash_str = ldns_rdf2str(hash_next);
1393  nsec_next = ldns_dname_new_frm_str(next_hash_str);
1394  LDNS_FREE(next_hash_str);
1395  chopped_dname = ldns_dname_left_chop(nsec_owner);
1396  status = ldns_dname_cat(nsec_next, chopped_dname);
1397  ldns_rdf_deep_free(chopped_dname);
1398  if (status != LDNS_STATUS_OK) {
1399  printf("error catting: %s\n", ldns_get_errorstr_by_id(status));
1400  }
1401  } else {
1402  ldns_rdf_deep_free(nsec_next);
1403  return false;
1404  }
1405 
1406  /* in the case of the last nsec */
1407  if(ldns_dname_compare(nsec_owner, nsec_next) > 0) {
1408  result = (ldns_dname_compare(nsec_owner, name) <= 0 ||
1409  ldns_dname_compare(name, nsec_next) < 0);
1410  } else {
1411  result = (ldns_dname_compare(nsec_owner, name) <= 0 &&
1412  ldns_dname_compare(name, nsec_next) < 0);
1413  }
1414 
1415  ldns_rdf_deep_free(nsec_next);
1416  return result;
1417 }
1418 
1419 #ifdef HAVE_SSL
1420 /* sig may be null - if so look in the packet */
1421 
1424  ldns_rr_list *k, ldns_rr_list *s,
1425  time_t check_time, ldns_rr_list *good_keys)
1426 {
1427  ldns_rr_list *rrset;
1428  ldns_rr_list *sigs;
1429  ldns_rr_list *sigs_covered;
1430  ldns_rdf *rdf_t;
1431  ldns_rr_type t_netorder;
1432 
1433  if (!k) {
1434  return LDNS_STATUS_ERR;
1435  /* return LDNS_STATUS_CRYPTO_NO_DNSKEY; */
1436  }
1437 
1438  if (t == LDNS_RR_TYPE_RRSIG) {
1439  /* we don't have RRSIG(RRSIG) (yet? ;-) ) */
1440  return LDNS_STATUS_ERR;
1441  }
1442 
1443  if (s) {
1444  /* if s is not NULL, the sigs are given to use */
1445  sigs = s;
1446  } else {
1447  /* otherwise get them from the packet */
1451  if (!sigs) {
1452  /* no sigs */
1453  return LDNS_STATUS_ERR;
1454  /* return LDNS_STATUS_CRYPTO_NO_RRSIG; */
1455  }
1456  }
1457 
1458  /* rrsig are subtyped, so now we need to find the correct
1459  * sigs for the type t
1460  */
1461  t_netorder = htons(t); /* rdf are in network order! */
1462  /* a type identifier is a 16-bit number, so the size is 2 bytes */
1463  rdf_t = ldns_rdf_new(LDNS_RDF_TYPE_TYPE, 2, &t_netorder);
1464 
1465  sigs_covered = ldns_rr_list_subtype_by_rdf(sigs, rdf_t, 0);
1466  ldns_rdf_free(rdf_t);
1467  if (! sigs_covered) {
1468  if (! s) {
1469  ldns_rr_list_deep_free(sigs);
1470  }
1471  return LDNS_STATUS_ERR;
1472  }
1473  ldns_rr_list_deep_free(sigs_covered);
1474 
1475  rrset = ldns_pkt_rr_list_by_name_and_type(p, o, t,
1477  if (!rrset) {
1478  if (! s) {
1479  ldns_rr_list_deep_free(sigs);
1480  }
1481  return LDNS_STATUS_ERR;
1482  }
1483  return ldns_verify_time(rrset, sigs, k, check_time, good_keys);
1484 }
1485 
1488  ldns_rr_list *k, ldns_rr_list *s, ldns_rr_list *good_keys)
1489 {
1490  return ldns_pkt_verify_time(p, t, o, k, s, ldns_time(NULL), good_keys);
1491 }
1492 #endif /* HAVE_SSL */
1493 
1496 {
1497  size_t i;
1498  char *next_nsec_owner_str;
1499  ldns_rdf *next_nsec_owner_label;
1500  ldns_rdf *next_nsec_rdf;
1501  ldns_status status = LDNS_STATUS_OK;
1502 
1503  for (i = 0; i < ldns_rr_list_rr_count(nsec3_rrs); i++) {
1504  if (i == ldns_rr_list_rr_count(nsec3_rrs) - 1) {
1505  next_nsec_owner_label =
1507  0)), 0);
1508  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1509  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1510  == '.') {
1511  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1512  = '\0';
1513  }
1514  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1515  next_nsec_owner_str);
1516  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1517  next_nsec_rdf, 4)) {
1518  /* todo: error */
1519  }
1520 
1521  ldns_rdf_deep_free(next_nsec_owner_label);
1522  LDNS_FREE(next_nsec_owner_str);
1523  } else {
1524  next_nsec_owner_label =
1526  i + 1)),
1527  0);
1528  next_nsec_owner_str = ldns_rdf2str(next_nsec_owner_label);
1529  if (next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1530  == '.') {
1531  next_nsec_owner_str[strlen(next_nsec_owner_str) - 1]
1532  = '\0';
1533  }
1534  status = ldns_str2rdf_b32_ext(&next_nsec_rdf,
1535  next_nsec_owner_str);
1536  ldns_rdf_deep_free(next_nsec_owner_label);
1537  LDNS_FREE(next_nsec_owner_str);
1538  if (!ldns_rr_set_rdf(ldns_rr_list_rr(nsec3_rrs, i),
1539  next_nsec_rdf, 4)) {
1540  /* todo: error */
1541  }
1542  }
1543  }
1544  return status;
1545 }
1546 
1547 int
1548 qsort_rr_compare_nsec3(const void *a, const void *b)
1549 {
1550  const ldns_rr *rr1 = * (const ldns_rr **) a;
1551  const ldns_rr *rr2 = * (const ldns_rr **) b;
1552  if (rr1 == NULL && rr2 == NULL) {
1553  return 0;
1554  }
1555  if (rr1 == NULL) {
1556  return -1;
1557  }
1558  if (rr2 == NULL) {
1559  return 1;
1560  }
1561  return ldns_rdf_compare(ldns_rr_owner(rr1), ldns_rr_owner(rr2));
1562 }
1563 
1564 void
1566 {
1567  qsort(unsorted->_rrs,
1568  ldns_rr_list_rr_count(unsorted),
1569  sizeof(ldns_rr *),
1571 }
1572 
1573 int
1575  , ATTR_UNUSED(void *n)
1576  )
1577 {
1579 }
1580 
1581 int
1583  , ATTR_UNUSED(void *n)
1584  )
1585 {
1587 }
1588 
1589 int
1591  , ATTR_UNUSED(void *n)
1592  )
1593 {
1595 }
1596 
1597 int
1599  , ATTR_UNUSED(void *n)
1600  )
1601 {
1603 }
1604 
1605 #ifdef HAVE_SSL
1606 ldns_rdf *
1608  const long sig_len)
1609 {
1610  ldns_rdf *sigdata_rdf;
1611  DSA_SIG *dsasig;
1612  unsigned char *dsasig_data = (unsigned char*)ldns_buffer_begin(sig);
1613  size_t byte_offset;
1614 
1615  dsasig = d2i_DSA_SIG(NULL,
1616  (const unsigned char **)&dsasig_data,
1617  sig_len);
1618  if (!dsasig) {
1619  DSA_SIG_free(dsasig);
1620  return NULL;
1621  }
1622 
1623  dsasig_data = LDNS_XMALLOC(unsigned char, 41);
1624  if(!dsasig_data) {
1625  DSA_SIG_free(dsasig);
1626  return NULL;
1627  }
1628  dsasig_data[0] = 0;
1629  byte_offset = (size_t) (20 - BN_num_bytes(dsasig->r));
1630  if (byte_offset > 20) {
1631  DSA_SIG_free(dsasig);
1632  LDNS_FREE(dsasig_data);
1633  return NULL;
1634  }
1635  memset(&dsasig_data[1], 0, byte_offset);
1636  BN_bn2bin(dsasig->r, &dsasig_data[1 + byte_offset]);
1637  byte_offset = (size_t) (20 - BN_num_bytes(dsasig->s));
1638  if (byte_offset > 20) {
1639  DSA_SIG_free(dsasig);
1640  LDNS_FREE(dsasig_data);
1641  return NULL;
1642  }
1643  memset(&dsasig_data[21], 0, byte_offset);
1644  BN_bn2bin(dsasig->s, &dsasig_data[21 + byte_offset]);
1645 
1646  sigdata_rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, 41, dsasig_data);
1647  if(!sigdata_rdf) {
1648  LDNS_FREE(dsasig_data);
1649  }
1650  DSA_SIG_free(dsasig);
1651 
1652  return sigdata_rdf;
1653 }
1654 
1657  const ldns_rdf *sig_rdf)
1658 {
1659  /* the EVP api wants the DER encoding of the signature... */
1660  BIGNUM *R, *S;
1661  DSA_SIG *dsasig;
1662  unsigned char *raw_sig = NULL;
1663  int raw_sig_len;
1664 
1665  if(ldns_rdf_size(sig_rdf) < 1 + 2*SHA_DIGEST_LENGTH)
1667  /* extract the R and S field from the sig buffer */
1668  R = BN_new();
1669  if(!R) return LDNS_STATUS_MEM_ERR;
1670  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 1,
1671  SHA_DIGEST_LENGTH, R);
1672  S = BN_new();
1673  if(!S) {
1674  BN_free(R);
1675  return LDNS_STATUS_MEM_ERR;
1676  }
1677  (void) BN_bin2bn((unsigned char *) ldns_rdf_data(sig_rdf) + 21,
1678  SHA_DIGEST_LENGTH, S);
1679 
1680  dsasig = DSA_SIG_new();
1681  if (!dsasig) {
1682  BN_free(R);
1683  BN_free(S);
1684  return LDNS_STATUS_MEM_ERR;
1685  }
1686 
1687  dsasig->r = R;
1688  dsasig->s = S;
1689 
1690  raw_sig_len = i2d_DSA_SIG(dsasig, &raw_sig);
1691  if (raw_sig_len < 0) {
1692  DSA_SIG_free(dsasig);
1693  free(raw_sig);
1694  return LDNS_STATUS_SSL_ERR;
1695  }
1696  if (ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1697  ldns_buffer_write(target_buffer, raw_sig, (size_t)raw_sig_len);
1698  }
1699 
1700  DSA_SIG_free(dsasig);
1701  free(raw_sig);
1702 
1703  return ldns_buffer_status(target_buffer);
1704 }
1705 
1706 #ifdef USE_ECDSA
1707 #ifndef S_SPLINT_S
1708 ldns_rdf *
1709 ldns_convert_ecdsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
1710 {
1711  ECDSA_SIG* ecdsa_sig;
1712  unsigned char *data = (unsigned char*)ldns_buffer_begin(sig);
1713  ldns_rdf* rdf;
1714  ecdsa_sig = d2i_ECDSA_SIG(NULL, (const unsigned char **)&data, sig_len);
1715  if(!ecdsa_sig) return NULL;
1716 
1717  /* "r | s". */
1718  data = LDNS_XMALLOC(unsigned char,
1719  BN_num_bytes(ecdsa_sig->r) + BN_num_bytes(ecdsa_sig->s));
1720  if(!data) {
1721  ECDSA_SIG_free(ecdsa_sig);
1722  return NULL;
1723  }
1724  BN_bn2bin(ecdsa_sig->r, data);
1725  BN_bn2bin(ecdsa_sig->s, data+BN_num_bytes(ecdsa_sig->r));
1726  rdf = ldns_rdf_new(LDNS_RDF_TYPE_B64, (size_t)(
1727  BN_num_bytes(ecdsa_sig->r) + BN_num_bytes(ecdsa_sig->s)), data);
1728  ECDSA_SIG_free(ecdsa_sig);
1729  return rdf;
1730 }
1731 
1734  const ldns_rdf *sig_rdf)
1735 {
1736  ECDSA_SIG* sig;
1737  int raw_sig_len;
1738  long bnsize = (long)ldns_rdf_size(sig_rdf) / 2;
1739  /* if too short, or not even length, do not bother */
1740  if(bnsize < 16 || (size_t)bnsize*2 != ldns_rdf_size(sig_rdf))
1741  return LDNS_STATUS_ERR;
1742 
1743  /* use the raw data to parse two evenly long BIGNUMs, "r | s". */
1744  sig = ECDSA_SIG_new();
1745  if(!sig) return LDNS_STATUS_MEM_ERR;
1746  sig->r = BN_bin2bn((const unsigned char*)ldns_rdf_data(sig_rdf),
1747  bnsize, sig->r);
1748  sig->s = BN_bin2bn((const unsigned char*)ldns_rdf_data(sig_rdf)+bnsize,
1749  bnsize, sig->s);
1750  if(!sig->r || !sig->s) {
1751  ECDSA_SIG_free(sig);
1752  return LDNS_STATUS_MEM_ERR;
1753  }
1754 
1755  raw_sig_len = i2d_ECDSA_SIG(sig, NULL);
1756  if (ldns_buffer_reserve(target_buffer, (size_t) raw_sig_len)) {
1757  unsigned char* pp = (unsigned char*)
1758  ldns_buffer_current(target_buffer);
1759  raw_sig_len = i2d_ECDSA_SIG(sig, &pp);
1760  ldns_buffer_skip(target_buffer, (ssize_t) raw_sig_len);
1761  }
1762  ECDSA_SIG_free(sig);
1763 
1764  return ldns_buffer_status(target_buffer);
1765 }
1766 
1767 #endif /* S_SPLINT_S */
1768 #endif /* USE_ECDSA */
1769 #endif /* HAVE_SSL */
ldns_rdf * ldns_rr_rdf(const ldns_rr *rr, size_t nr)
returns the rdata field member counter.
Definition: rr.c:848
implementation of buffers to ease operations
Definition: buffer.h:50
bool ldns_nsec_covers_name(const ldns_rr *nsec, const ldns_rdf *name)
Checks coverage of NSEC(3) RR name span Remember that nsec and name must both be in canonical form (i...
Definition: dnssec.c:1374
#define R(b, x)
Definition: sha2.c:191
ldns_rdf * ldns_rr_set_rdf(ldns_rr *rr, const ldns_rdf *f, size_t position)
sets a rdf member, it will be set on the position given.
Definition: rr.c:779
#define LDNS_SIGNATURE_LEAVE_ADD_NEW
return values for the old-signature callback
Definition: dnssec.h:47
void ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
Definition: util.c:108
void ldns_rdf_deep_free(ldns_rdf *rd)
frees a rdf structure and frees the data.
Definition: rdata.c:230
void ldns_rr_set_type(ldns_rr *rr, ldns_rr_type rr_type)
sets the type in the rr.
Definition: rr.c:767
uint8_t ldns_dname_label_count(const ldns_rdf *r)
count the number of labels inside a LDNS_RDF_DNAME type rdf.
Definition: dname.c:214
RSA * ldns_key_buf2rsa_raw(unsigned char *key, size_t len)
Like ldns_key_buf2rsa, but uses raw buffer.
Definition: dnssec.c:396
ldns_rr_type ldns_rdf2rr_type(const ldns_rdf *rd)
convert an rdf of type LDNS_RDF_TYPE_TYPE to an actual LDNS_RR_TYPE.
Definition: rr.c:2410
DNSSEC.
Definition: rr.h:173
b64 string
Definition: rdata.h:67
ldns_rr_list * ldns_pkt_rr_list_by_name_and_type(const ldns_pkt *packet, const ldns_rdf *ownername, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type and type from a packet.
Definition: packet.c:320
int ldns_dname_compare(const ldns_rdf *dname1, const ldns_rdf *dname2)
Compares the two dname rdf&#39;s according to the algorithm for ordering in RFC4034 Section 6...
Definition: dname.c:356
ldns_rdf * ldns_native2rdf_int16(ldns_rdf_type type, uint16_t value)
returns the rdf containing the native uint16_t representation.
Definition: rdata.c:132
bool ldns_dnssec_pkt_has_rrsigs(const ldns_pkt *pkt)
Checks whether the packet contains rrsigs.
Definition: dnssec.c:198
uint16_t ldns_nsec3_iterations(const ldns_rr *nsec3_rr)
Returns the number of hash iterations used in the given NSEC3 RR.
Definition: dnssec.c:1242
uint8_t * ldns_nsec3_salt_data(const ldns_rr *nsec3_rr)
Returns the salt bytes used in the given NSEC3 RR.
Definition: dnssec.c:1279
ldns_rdf * ldns_nsec_get_bitmap(ldns_rr *nsec)
Returns the rdata field that contains the bitmap of the covered types of the given NSEC record...
Definition: dnssec.c:84
List or Set of Resource Records.
Definition: rr.h:306
ldns_status ldns_str2rdf_dname(ldns_rdf **d, const char *str)
convert a dname string into wireformat
Definition: str2host.c:296
ldns_rdf * ldns_nsec3_salt(const ldns_rr *nsec3_rr)
Returns the salt used in the given NSEC3 RR.
Definition: dnssec.c:1256
ldns_rr * ldns_dnssec_get_dnskey_for_rrsig(const ldns_rr *rrsig, const ldns_rr_list *rrs)
Returns the DNSKEY that corresponds to the given RRSIG rr from the list, if any.
Definition: dnssec.c:57
uint8_t ldns_rdf2native_int8(const ldns_rdf *rd)
returns the native uint8_t representation from the rdf.
Definition: rdata.c:70
int ldns_dnssec_default_delete_signatures(ldns_rr *sig, void *n)
Default callback function to always remove present signatures, but add no new ones.
ldns_dnssec_rrsets * rrsets
The rrsets for this name.
Definition: dnssec_zone.h:63
a RR type
Definition: rdata.h:73
#define LDNS_XMALLOC(type, count)
Definition: util.h:51
#define LDNS_MIN_BUFLEN
number of initial bytes in buffer of which we cannot tell the size before hand
Definition: buffer.h:33
size_t ldns_rdf_size(const ldns_rdf *rd)
returns the size of the rdf.
Definition: rdata.c:24
ldns_status ldns_convert_dsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (in rfc2536 format) to a buffer with the signature in rfc2459 format...
Definition: dnssec.c:1656
void ldns_nsec3_add_param_rdfs(ldns_rr *rr, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Sets all the NSEC3 options.
Definition: dnssec.c:1057
ldns_status ldns_str2rdf_b32_ext(ldns_rdf **rd, const char *str)
convert the string with the b32 ext hex data into wireformat
Definition: str2host.c:585
enum ldns_enum_hash ldns_hash
Definition: keys.h:74
#define LDNS_SHA256_DIGEST_LENGTH
Definition: sha2.h:70
void ldns_rr_list_deep_free(ldns_rr_list *rr_list)
frees an rr_list structure and all rrs contained therein.
Definition: rr.c:959
void ldns_buffer_free(ldns_buffer *buffer)
frees the buffer.
Definition: buffer.c:137
ldns_rr_list * ldns_rr_list_subtype_by_rdf(ldns_rr_list *l, ldns_rdf *r, size_t pos)
Return the rr_list which matches the rdf at position field.
Definition: rr.c:1037
ldns_rr * ldns_rr_new_frm_type(ldns_rr_type t)
creates a new rr structure, based on the given type.
Definition: rr.c:42
ldns_rdf * ldns_rdf_clone(const ldns_rdf *rd)
clones a rdf structure.
Definition: rdata.c:222
void ldns_dname2canonical(const ldns_rdf *rd)
Put a dname into canonical fmt - ie.
Definition: dname.c:277
ldns_rdf * ldns_rr_rrsig_keytag(const ldns_rr *r)
returns the keytag of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:183
ldns_rdf * ldns_nsec3_hash_name_frm_nsec3(const ldns_rr *nsec, ldns_rdf *name)
Calculates the hashed name using the parameters of the given NSEC3 RR.
Definition: dnssec.c:1316
#define LDNS_MAX_PACKETLEN
Definition: packet.h:24
void ldns_rr_free(ldns_rr *rr)
frees an RR structure
Definition: rr.c:75
ldns_rdf * ldns_dname_left_chop(const ldns_rdf *d)
chop one label off the left side of a dname.
Definition: dname.c:189
2535typecode
Definition: rr.h:131
unsigned char * ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:620
int ldns_dnssec_default_replace_signatures(ldns_rr *sig, void *n)
Default callback function to always leave present signatures, and add new ones.
#define LDNS_XREALLOC(ptr, type, count)
Definition: util.h:57
ldns_rr_list * ldns_pkt_rr_list_by_type(const ldns_pkt *packet, ldns_rr_type type, ldns_pkt_section sec)
return all the rr with a specific type from a packet.
Definition: packet.c:284
Resource Record.
Definition: rr.h:278
void ldns_rdf_free(ldns_rdf *rd)
frees a rdf structure, leaving the data pointer intact.
Definition: rdata.c:241
ldns_status ldns_rdf2buffer_wire(ldns_buffer *buffer, const ldns_rdf *rdf)
Copies the rdata data to the buffer in wire format.
Definition: host2wire.c:36
Including this file will include all ldns files, and define some lookup tables.
ldns_rdf * ldns_dname_new_frm_str(const char *str)
creates a new dname rdf from a string.
Definition: dname.c:265
marks the start of a zone of authority
Definition: rr.h:93
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_name_and_type(const ldns_pkt *pkt, ldns_rdf *name, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given name and type.
Definition: dnssec.c:217
int ldns_dnssec_rrsets_contains_type(ldns_dnssec_rrsets *rrsets, ldns_rr_type type)
returns whether a rrset of the given type is found in the rrsets.
Definition: dnssec.c:757
ldns_rr_list * ldns_dnssec_pkt_get_rrsigs_for_type(const ldns_pkt *pkt, ldns_rr_type type)
Returns a ldns_rr_list containing the signatures covering the given type.
Definition: dnssec.c:244
uint8_t ldns_nsec3_salt_length(const ldns_rr *nsec3_rr)
Returns the length of the salt used in the given NSEC3 RR.
Definition: dnssec.c:1268
uint16_t ldns_pkt_nscount(const ldns_pkt *packet)
Return the packet&#39;s ns count.
Definition: packet.c:111
uint8_t * ldns_rdf_data(const ldns_rdf *rd)
returns the data of the rdf.
Definition: rdata.c:38
ldns_rdf * ldns_nsec3_next_owner(const ldns_rr *nsec3_rr)
Returns the first label of the next ownername in the NSEC3 chain (ie.
Definition: dnssec.c:1296
ldns_rr * ldns_rr_list_rr(const ldns_rr_list *rr_list, size_t nr)
returns a specific rr of an rrlist.
Definition: rr.c:929
ldns_rr * ldns_create_nsec(ldns_rdf *cur_owner, ldns_rdf *next_owner, ldns_rr_list *rrs)
Create a NSEC record.
Definition: dnssec.c:914
void ldns_rr_set_class(ldns_rr *rr, ldns_rr_class rr_class)
sets the class in the rr.
Definition: rr.c:773
#define LDNS_SIGNATURE_REMOVE_NO_ADD
Definition: dnssec.h:50
16 bits
Definition: rdata.h:53
ldns_rr * ldns_dnssec_create_nsec(ldns_dnssec_name *from, ldns_dnssec_name *to, ldns_rr_type nsec_type)
Creates NSEC.
Definition: dnssec.c:771
#define ATTR_UNUSED(x)
Definition: common.h:64
uint16_t ldns_pkt_ancount(const ldns_pkt *packet)
Return the packet&#39;s an count.
Definition: packet.c:105
ldns_status ldns_pkt_verify_time(ldns_pkt *p, ldns_rr_type t, ldns_rdf *o, ldns_rr_list *k, ldns_rr_list *s, time_t check_time, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1423
uint16_t ldns_rdf2native_int16(const ldns_rdf *rd)
returns the native uint16_t representation from the rdf.
Definition: rdata.c:84
ldns_rr * ldns_dnssec_create_nsec3(ldns_dnssec_name *from, ldns_dnssec_name *to, ldns_rdf *zone_name, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Creates NSEC3.
Definition: dnssec.c:825
#define LDNS_NSEC3_VARS_OPTOUT_MASK
Definition: rdata.h:39
nsec type codes
Definition: rdata.h:71
return NULL
Definition: keys.c:738
ldns_status ldns_verify_time(ldns_rr_list *rrset, ldns_rr_list *rrsig, const ldns_rr_list *keys, time_t check_time, ldns_rr_list *good_keys)
Verifies a list of signatures for one rrset.
DSA * dsa
Definition: keys.c:665
int ldns_key_EVP_load_gost_id(void)
Get the PKEY id for GOST, loads GOST into openssl as a side effect.
ldns_status ldns_dname_cat(ldns_rdf *rd1, ldns_rdf *rd2)
concatenates rd2 after rd1 (rd2 is copied, rd1 is modified)
Definition: dname.c:90
bool ldns_nsec3_optout(const ldns_rr *nsec3_rr)
Returns true if the opt-out flag has been set in the given NSEC3 RR.
Definition: dnssec.c:1236
uint16_t ldns_calc_keytag(const ldns_rr *key)
calculates a keytag of a key for use in DNSSEC.
Definition: dnssec.c:271
ldns_status ldns_rr_rdata2buffer_wire(ldns_buffer *buffer, const ldns_rr *rr)
Converts an rr&#39;s rdata to wireformat, while excluding the ownername and all the stuff before the rdat...
Definition: host2wire.c:216
ldns_rdf * ldns_nsec3_hash_name(ldns_rdf *name, uint8_t algorithm, uint16_t iterations, uint8_t salt_length, uint8_t *salt)
Calculates the hashed name using the given parameters.
Definition: dnssec.c:964
draft-ietf-dnsext-delegation
Definition: rr.h:167
DSA * ldns_key_buf2dsa(ldns_buffer *key)
converts a buffer holding key material to a DSA key in openssl.
Definition: dnssec.c:330
hex string
Definition: rdata.h:69
ldns_rdf * ldns_nsec3_bitmap(const ldns_rr *nsec3_rr)
Returns the bitmap specifying the covered types of the given NSEC3 RR.
Definition: dnssec.c:1306
DNS packet.
Definition: packet.h:233
uint16_t ldns_calc_keytag_raw(uint8_t *key, size_t keysize)
Calculates keytag of DNSSEC key, operates on wireformat rdata.
Definition: dnssec.c:301
DSA * ldns_key_buf2dsa_raw(unsigned char *key, size_t len)
Like ldns_key_buf2dsa, but uses raw buffer.
Definition: dnssec.c:337
void ldns_rr_set_owner(ldns_rr *rr, ldns_rdf *owner)
sets the owner in the rr structure.
Definition: rr.c:743
int ldns_digest_evp(unsigned char *data, unsigned int len, unsigned char *dest, const EVP_MD *md)
Utility function to calculate hash using generic EVP_MD pointer.
Definition: dnssec.c:455
ldns_rdf * ldns_dnssec_nsec3_closest_encloser(ldns_rdf *qname, ldns_rr_type qtype __attribute__((unused)), ldns_rr_list *nsec3s)
Definition: dnssec.c:97
#define LDNS_SIGNATURE_REMOVE_ADD_NEW
Definition: dnssec.h:49
int ldns_dnssec_default_add_to_signatures(ldns_rr *sig, void *n)
Default callback function to always leave present signatures, and add new ones.
void ldns_rdf_print(FILE *output, const ldns_rdf *rdf)
Prints the data in the rdata field to the given file stream (in presentation format) ...
Definition: host2str.c:2216
ldns_rr_type ldns_rr_get_type(const ldns_rr *rr)
returns the type of the rr.
Definition: rr.c:882
ldns_rr * ldns_dnssec_get_rrsig_for_name_and_type(const ldns_rdf *name, const ldns_rr_type type, const ldns_rr_list *rrs)
Returns the first RRSIG rr that corresponds to the rrset with the given name and type.
Definition: dnssec.c:29
ldns_rdf * ldns_rr_rrsig_typecovered(const ldns_rr *r)
returns the type covered of a LDNS_RR_TYPE_RRSIG rr
Definition: rr_functions.c:111
ldns_rr * ldns_create_nsec3(ldns_rdf *cur_owner, ldns_rdf *cur_zone, ldns_rr_list *rrs, uint8_t algorithm, uint8_t flags, uint16_t iterations, uint8_t salt_length, uint8_t *salt, bool emptynonterminal)
Definition: dnssec.c:1128
int ldns_b32_ntop_extended_hex(uint8_t const *src, size_t srclength, char *target, size_t targsize)
void ldns_rr_set_ttl(ldns_rr *rr, uint32_t ttl)
sets the ttl in the rr structure.
Definition: rr.c:755
enum ldns_enum_status ldns_status
Definition: error.h:122
ldns_rdf * ldns_rdf_new_frm_data(ldns_rdf_type type, size_t size, const void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:193
uint8_t ldns_nsec3_flags(const ldns_rr *nsec3_rr)
Returns flags field.
Definition: dnssec.c:1223
ldns_rdf * hashed_name
pointer to store the hashed name (only used when in an NSEC3 zone
Definition: dnssec_zone.h:85
ldns_buffer * ldns_buffer_new(size_t capacity)
creates a new buffer with the specified capacity.
Definition: buffer.c:16
This module contains base functions for DNSSEC operations (RFC4033 t/m RFC4035).
ldns_rdf * ldns_rdf_new(ldns_rdf_type type, size_t size, void *data)
allocates a new rdf structure and fills it.
Definition: rdata.c:179
ldns_rr ** _rrs
Definition: rr.h:310
RSA * ldns_key_buf2rsa(ldns_buffer *key)
converts a buffer holding key material to a RSA key in openssl.
Definition: dnssec.c:389
#define LDNS_RDF_SIZE_WORD
Definition: rdata.h:34
bool ldns_nsec_bitmap_covers_type(const ldns_rdf *nsec_bitmap, ldns_rr_type type)
Checks coverage of NSEC RR type bitmap.
Definition: dnssec.c:1341
bool ldns_buffer_reserve(ldns_buffer *buffer, size_t amount)
ensures BUFFER can contain at least AMOUNT more bytes.
Definition: buffer.c:79
Definition: keys.h:69
ldns_rdf * ldns_rr_rrsig_signame(const ldns_rr *r)
returns the signers name of a LDNS_RR_TYPE_RRSIG RR
Definition: rr_functions.c:195
char * ldns_rdf2str(const ldns_rdf *rdf)
Converts the data in the rdata field to presentation format and returns that as a char *...
Definition: host2str.c:2098
bool ldns_rr_push_rdf(ldns_rr *rr, const ldns_rdf *f)
sets rd_field member, it will be placed in the next available spot.
Definition: rr.c:796
Resource record data field.
Definition: rdata.h:138
ldns_dnssec_rrsets * next
Definition: dnssec_zone.h:37
int ldns_get_bit(uint8_t bits[], size_t index)
Returns the value of the specified bit The bits are counted from left to right, so bit #0 is the left...
Definition: util.c:88
nsec3 hash salt
Definition: rdata.h:105
8 bits
Definition: rdata.h:51
ldns_rdf * ldns_rr_owner(const ldns_rr *rr)
returns the owner name of an rr structure.
Definition: rr.c:858
ldns_rr * ldns_rr_new(void)
creates a new rr structure.
Definition: rr.c:24
size_t ldns_rr_list_rr_count(const ldns_rr_list *rr_list)
returns the number of rr&#39;s in an rr_list.
Definition: rr.c:896
#define LDNS_SIGNATURE_LEAVE_NO_ADD
Definition: dnssec.h:48
enum ldns_enum_rr_type ldns_rr_type
Definition: rr.h:215
#define LDNS_FREE(ptr)
Definition: util.h:60
ldns_status ldns_convert_ecdsa_rrsig_rdf2asn1(ldns_buffer *target_buffer, const ldns_rdf *sig_rdf)
Converts the RRSIG signature RDF (from DNS) to a buffer with the signature in ASN1 format as openssl ...
Definition: dnssec.c:1733
ldns_status ldns_dnssec_chain_nsec3_list(ldns_rr_list *nsec3_rrs)
chains nsec3 list
Definition: dnssec.c:1495
ldns_rr_list * ldns_pkt_authority(const ldns_pkt *packet)
Return the packet&#39;s authority section.
Definition: packet.c:135
an authoritative name server
Definition: rr.h:85
ldns_rdf * ldns_dnssec_create_nsec_bitmap(ldns_rr_type rr_type_list[], size_t size, ldns_rr_type nsec_type)
Create the type bitmap for an NSEC(3) record.
Definition: dnssec.c:658
ldns_rdf * ldns_convert_ecdsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
Converts the ECDSA signature from ASN1 representation (as used by OpenSSL) to raw signature data as u...
Definition: dnssec.c:1709
ldns_rdf * ldns_dname_label(const ldns_rdf *rdf, uint8_t labelpos)
look inside the rdf and if it is an LDNS_RDF_TYPE_DNAME try and retrieve a specific label...
Definition: dname.c:556
const char * ldns_get_errorstr_by_id(ldns_status err)
look up a descriptive text by each error.
Definition: error.c:131
uint32_t ldns_rr_ttl(const ldns_rr *rr)
returns the ttl of an rr structure.
Definition: rr.c:870
ldns_rr_class ldns_rr_get_class(const ldns_rr *rr)
returns the class of the rr.
Definition: rr.c:888
used to get all non-question rrs from a packet
Definition: packet.h:280
ldns_rdf * ldns_dnssec_name_name(ldns_dnssec_name *name)
Returns the domain name of the given dnssec_name structure.
Definition: dnssec_zone.c:405
ldns_rr_list * ldns_pkt_answer(const ldns_pkt *packet)
Return the packet&#39;s answer section.
Definition: packet.c:129
int qsort_rr_compare_nsec3(const void *a, const void *b)
compare for nsec3 sort
Definition: dnssec.c:1548
unsigned char * ldns_sha1(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha1.c:170
ldns_status ldns_pkt_verify(ldns_pkt *p, ldns_rr_type t, ldns_rdf *o, ldns_rr_list *k, ldns_rr_list *s, ldns_rr_list *good_keys)
verify a packet
Definition: dnssec.c:1487
uint8_t ldns_nsec3_algorithm(const ldns_rr *nsec3_rr)
Returns the hash algorithm used in the given NSEC3 RR.
Definition: dnssec.c:1210
int ldns_dnssec_default_leave_signatures(ldns_rr *sig, void *n)
Default callback function to always leave present signatures, and add no new ones for the keys of the...
ldns_rdf * ldns_convert_dsa_rrsig_asn12rdf(const ldns_buffer *sig, const long sig_len)
Converts the DSA signature from ASN1 representation (RFC2459, as used by OpenSSL) to raw signature da...
Definition: dnssec.c:1607
void ldns_rr_list_sort_nsec3(ldns_rr_list *unsorted)
sort nsec3 list
Definition: dnssec.c:1565
dsa p
Definition: keys.c:683
int ldns_rdf_compare(const ldns_rdf *rd1, const ldns_rdf *rd2)
compares two rdf&#39;s on their wire formats.
Definition: rdata.c:569
#define LDNS_SHA1_DIGEST_LENGTH
Definition: sha1.h:9
int
Definition: dnssec.c:1575
i
Definition: keys.c:681
ldns_rr * ldns_key_rr2ds(const ldns_rr *key, ldns_hash h)
returns a new DS rr that represents the given key rr.
Definition: dnssec.c:474