| addBalance | Add fine balance edges |
| addExclusion | Add exclusion edges |
| balanceCosts | Create a skeleton representation of the balance edge costs |
| build.dist.struct | An internal helper function that generates the data abstraction for the edge weights of the main network structure. |
| build.dist.struct_user | An internal helper function that generates the data abstraction for the edge weights of the main network structure using the distance matrix passed by the user. |
| callrelax | Call relax on the network |
| check_representative | Check the representativeness of matched treated units |
| combine_dist | An internal helper function that combines two distance object |
| combine_match_result | Combine two matching result |
| compare_matching | Generate covariate balance in different matches |
| compare_tables | Summarize covariate balance table |
| convert_index | An internal helper function that translates the matching index in the sorted data frame to the original dataframe's row index |
| convert_names | Internal helper function that converts axis name to internal variable name |
| costSkeleton | Create cost skeleton |
| data_precheck | Data precheck: Handle missing data(mean imputation) and remove redundant columns; it also adds an NA column for indicating whether it's missing |
| descr.stats_general | Generate summary statistics for matches |
| distanceFunctionHelper | Helper function that change input distance matrix |
| dist_bal_match | Optimal tradeoffs among distance, exclusion and marginal imbalance |
| dummy | This is a modified version of the function "dummy" from the R package dummies. Original code Copyright (c) 2011 Decision Patterns. |
| edgelist2ISM | Change the edgelist to the infinity sparse matrix |
| excludeCosts | Create a skeleton representation of the exclusion edge costs |
| extractEdges | Extract edges from the network |
| extractSupply | Extract the supply nodes from the net |
| filter_match_result | Filter match result |
| flattenSkeleton | Turns a skeleton representation of edge costs in a network |
| generateRhoObj | Penalty and objective values summary |
| generate_rhos | Generate rho pairs |
| getExactOn | Generate a factor for exact matching. |
| getPropensityScore | Fit propensity scores using logistic regression. |
| get_balance_table | Generate balance table |
| get_five_index | An internal helper function that gives the index of matching with a wide range of number of treated units left unmatched |
| get_pairdist_balance_graph | Total variation imbalance vs. marginal imbalance |
| get_pairdist_graph | Distance vs. exclusion |
| get_rho_obj | Penalty and objective values summary |
| get_tv_graph | Marginal imbalance vs. exclusion |
| get_unmatched | Get unmatched percentage |
| makeInfinitySparseMatrix | Internal helper to build infinity sparse matrix |
| makeSparse | Helper function to mask edges |
| matched_data | Get matched dataframe |
| matched_index | An internal helper function that translate the matching index in the sorted data frame to the original dataframe's row index |
| matrix2cost | change the distance matrix to cost |
| matrix2edgelist | Helper function to convert matrix to list |
| meldMask | Helper function to combine two sparse distances |
| netFlowMatch | Create network flow structure |
| obj.to.match | An internal helper function that transforms the output from the RELAX algorithm to a data structure that is more interpretable for the output of the main matching function |
| pairCosts | Create a skeleton representation of the edge costs |
| rho_proposition | Generate penalty coefficient pairs |
| solveP | Solve the network flow problem - basic version |
| solveP1 | Solve the network flow problem - twoDistMatch |
| summary.multiObjMatch | Generate numerical summary |
| two_dist_match | Optimal tradeoffs among two distances and exclusion |
| visualize | Visualize tradeoffs |