| NPBayesImputeCat-package | Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
| compute_probs | Estimating marginal and joint probabilities in imputed or synthetic datasets |
| CreateModel | Create and initialize the Lcm model object |
| DPMPM_nozeros_imp | Use DPMPM models to impute missing data where there are no structural zeros |
| DPMPM_nozeros_syn | Use DPMPM models to synthesize data where there are no structural zeros |
| DPMPM_zeros_imp | Use DPMPM models to impute missing data where there are no structural zeros |
| fit_GLMs | Fit GLM models for imputed or synthetic datasets |
| GetDataFrame | Convert imputed data to a dataframe, using the same setting from original input data. |
| GetMCZ | Convert disjointed structrual zeros to a dataframe, using the same setting from original structrual zero data. |
| kstar_MCMCdiag | Perform MCMC diagnostics for kstar |
| Lcm | Class '"Rcpp_Lcm"' |
| marginal_compare_all_imp | Plot estimated marginal probabilities from observed data vs imputed datasets |
| marginal_compare_all_syn | Plot estimated marginal probabilities from observed data vs synthetic datasets |
| MCZ | Example dataframe for structrual zeros based on the NYMockexample dataset. |
| NPBayesImputeCat | Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
| pool_estimated_probs | Pool probability estimates from imputed or synthetic datasets |
| pool_fitted_GLMs | Pool estimates of fitted GLM models in imputed or synthetic datasets |
| Rcpp_Lcm-class | Rcpp implemenation of the Lcm functions |
| ss16pusa_ds_MCZ | Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset. |
| ss16pusa_mi_MCZ | Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset. |
| ss16pusa_sample_nozeros | Example dataframe for input categorical data without structural zeros (without missing values). |
| ss16pusa_sample_nozeros_miss | Example dataframe for input categorical data without structural zeros (with missing values). |
| ss16pusa_sample_zeros | Example dataframe for input categorical data with structural zeros (without missing values). |
| ss16pusa_sample_zeros_miss | Example dataframe for input categorical data with structural zeros (with missing values). |
| UpdateX | Allow user to update the model with data matrix of same kind. |
| X | Example dataframe for input categorical data with missing values based on the NYMockexample dataset. |