| ppclust-package | Probabilistic and Possibilistic Cluster Analysis |
| as.ppclust | Convert object to 'ppclust' class |
| comp.omega | Compute the possibilistic penalty argument for PCM |
| crisp | Crisp the fuzzy membership degrees |
| ekm | K-Means Clustering Using Different Seeding Techniques |
| fcm | Fuzzy C-Means Clustering |
| fcm2 | Type-2 Fuzzy C-Means Clustering |
| fpcm | Fuzzy Possibilistic C-Means Clustering |
| fpppcm | Fuzzy Possibilistic Product Partition C-Means Clustering |
| get.dmetrics | List the names of distance metrics |
| gg | Gath-Geva Clustering Algorithm |
| gk | Gustafson-Kessel Clustering |
| gkpfcm | Gustafson-Kessel Clustering Using PFCM |
| hcm | Hard C-Means Clustering |
| is.ppclust | Check the class of object for 'ppclust' |
| mfpcm | Modified Fuzzy Possibilistic C-Means Clustering |
| pca | Possibilistic Clustering Algorithm |
| pcm | Possibilistic C-Means Clustering |
| pcmr | Possibilistic C-Means Clustering with Repulsion |
| pfcm | Possibilistic Fuzzy C-Means Clustering Algorithm |
| plotcluster | Plot Clustering Results |
| ppclust2 | Convert 'ppclust' objects to the other types of cluster objects |
| summary.ppclust | Summarize the clustering results |
| upfc | Unsupervised Possibilistic Fuzzy C-Means Clustering Algorithm |
| x12 | Synthetic data set of two variables |
| x16 | Synthetic data set of two variables forming two clusters |