
Alpha-centrality in the context of stream DAGs

Ken Aho

October 12, 2025

Contents

1 Introduction 2

1.1 Matrix terminology . 2

Scalar . 2

Matrix . 2

Column vector . 3

Row vector . 3

Square matrix . 3

Major diagonal . 3

Triangular matrix . 3

Diagonal matrix . 3

Identity matrix . 4

1.2 Matrix operations . 4

Addition and subtraction . 4

Transpose . 4

Symmetric matrix . 5

Multiplication . 5

Trace . 6

Determinant . 7

Adjugate matrix . 8

Inverse . 9

Eigenanalysis . 10

1.3 Graph theory terminology . 12

Graph . 12

Undirected vs directed graph . 12

Walk and Path . 13

Cyclic vs acyclic graph . 13

Strongly connected, weakly connected, and disconnected graph 14

Local vs Global graph Perspectives . 14

Degree . 14

Adjacency matrix . 15

Stream DAG . 16

1

Weighted graph . 16

1.4 Infinite Series . 17

Geometric-series . 17

2 Alpha centrality 18

2.1 Motivation and Derivation . 18

2.2 α . 19

2.3 Mechanics of Alpha-centrality . 19

2.4 Introductory Example . 20

2.5 The Effect of α . 22

2.6 The Effect of Branching . 23

2.7 The Combined Effect of α and Branching . 26

2.8 Interpreting Alpha-centrality in Stream DAGs . 27

2.8.1 Unweighted DAGs . 27

2.8.2 Weighted DAGs . 28

1 Introduction

This document tries to provide a background concerning the workings of the Katz centrality (Katz,

1953) and α-centrality (Bonacich & Lloyd, 2001) which are essentially identical, and provide the

same rank order of centrality measures. Particular emphasis is given to directed acyclic graph rep-

resentations of stream networks (stream DAGs). The content is intended for a general audience

and so background concerning matrix terminology (Section 1.1), matrix operations (Section 1.2)

and graph theory terminology (Section 1.3) is provided. The geometric infinite series, vital for un-

derstanding the translation of alpha-centrality to a linear algebra format, is summarized in Section

1.4.

1.1 Matrix terminology

Scalar:

An entity that can be represented by a single number. Scalars are generally denoted with lower-case

italicized letters. For instance, x = 3.

Matrix:

A rectangular array whose elements are arranged into a table with i = 1, 2, 3, . . . ,m rows and

j = 1, 2, 3 . . . , n columns. Matrices are generally denoted with capitalized bold letters. The

matrix A below has m = 3 rows and n = 3 columns. That is, A has dimension (3× 3).

A
(3×3)

=





4 3 2
1 −3 3
7 −8 2





The term aij represents the element at the intersection of the ith row and the jth column. For

example, a1,2 = −3 in A.

2

Column vector:

A matrix made up a single column. Vectors (representing a column or row) are generally denoted

with a lower-case bold letter (or number). For example, a is a column vector, and 1 is a column

vector of ones.

a
(3×1)

=





3
7
6



, 1
(2×1)

=

[

1
1

]

Row vector:

A matrix made up a single row. For example, b is a row vector.

b
(1×3)

=
[

3 7 6
]

Square matrix:

A matrix with the same number of rows and columns. Thus, the matrix A above is a square matrix.

Major diagonal:

Often simply called the diagonal, the entity comprises the aii elements of a square matrix. For

instance, the diagonal of A above is {4,−3, 2}.

Triangular matrix:

The tabular triangle of data below the diagonal is the lower triangle. The tabular triangle above the

diagonal is the upper triangle. The matrices L and U below are are the lower and upper triangle

matrices of A, respectively.

L
(3×3)

=





4 0 0
1 −3 0
7 −8 2



, U
(3×3)

=





4 1 7
0 −3 −8
0 0 2





Note that the diagonal is included in both triangular matrices.

Diagonal matrix:

A square matrix with only zeroes on off-diagonal elements. The matrix B is a diagonal matrix.

B
(3×3)

=





1 0 0
0 2 0
0 0 2





3

Identity matrix:

A diagonal matrix with ones on the diagonal. The identity matrix is generally denoted I:

I
(3×3)

=





1 0 0
0 1 0
0 0 1





The identity matrix is often denoted In, indicating it has dimensions n × n. Thus, I2 is the

2× 2 identity matrix.

• If A is an n× n matrix, Im ·A = A · In = A. Thus, I serves as the matrix equivalent of a

scalar one.

• In · In = In.

• All rows and columns in In are linearly independent.

1.2 Matrix operations

Addition and subtraction:

The sum or difference of two matrices with the same dimensions is calculated element-wise. That

is, if

A
(3×3)

=





4 3 2
1 −3 3
7 −8 2



 and B
(3×3)

=





0 1 2
2 4 6
−1 2 −2





A−B
(3×3)

=





4 2 0
−1 −7 −3
−8 −10 4





To add or subtract a scalar to or from a matrix, one simply performs the arithmetic with every

element in the matrix. For instance, if x = 2, then:

x−B
(3×3)

=





2 1 0
0 −2 −4
3 0 4





Transpose:

The transpose of an m×n matrix A is the n×m matrix AT which is results form converting rows

into columns, and vice versa. That is, if

A
(3×3)

=





4 3 2
1 −3 3
7 −8 2



 then A
T

(3×3)
=





4 1 7
3 −3 −8
3 3 2





The transpose function in R is t():

4

A <- matrix(nrow = 3, ncol = 3, data = c(4,3,2,1,-3,3,7,-8,2),

byrow = T)

A

[,1] [,2] [,3]

[1,] 4 3 2

[2,] 1 -3 3

[3,] 7 -8 2

t(A)

[,1] [,2] [,3]

[1,] 4 1 7

[2,] 3 -3 -8

[3,] 2 3 2

Symmetric matrix:

A square matrix in which A = AT , because its upper and lower triangles are ªreflectionsº of each

other. The matrix A below is symmetric.

A
(3×3)

=





4 1 7
1 −3 −8
7 −8 2





If A = −AT , then A is a skew-symmetric matrix.

Multiplication:

• Multiplication of two matrices is defined if the number of columns of the multiplicand (left

matrix) is equal to the number of rows in multiplier (right matrix). Thus, while A
(2×3)

· B
(3×1)

exists, B
(3×1)
· A
(2×3)

does not exist. That is (unlike scalar multiplication), matrix multiplication

is not commutative.

• If A is an (m × n) matrix and B is an (n × p) matrix, then A ·B is the (m × p) matrix1

whose entries are given by the dot product (sum of element-wise vector products) of the

corresponding row of A and the corresponding column of B.

For instance, if

A
(2×2)

=

[

a c

b d

]

, and B
(2×2)

=

[

e g

f h

]

, then A ·B
(2×2)

=

[

(ae+ cf) (ag + ch)
(be+ df) (bg + dh)

]

.

1That is, the number of columns in A ·B will equal the number of columns in B, and the number of rows in A ·B
will be the number of rows in A.

5

As a numerical example, if

A
(2×2)

=

[

3 1
2 3

]

, and 1
(2×1)

=

[

1
1

]

, then A · 1
(2×1)

=

[

(3 · 1 + 1 · 1)
(2 · 1 + 3 · 1)

]

=

[

4
5

]

.

Thus, multiplying an m × n matrix by an n × 1 column vector of ones, results in an n × 1
column vector of row sums from the first matrix.

To multiply a scalar by a matrix, or multiply a matrix by a scalar, one simply performs

the arithmetic to every element in the matrix. That is, this operation is commutative. For

instance, if x = 2 then:

x ·A
(2×2)

= A · x =

[

3 · 2 1 · 2
2 · 2 3 · 2

]

=

[

6 2
4 6

]

.

The matrix multiply operator in R is %*%.

A <- matrix(2, 3, data = c(1, 2, 3, 4, 5, 6))

A

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

B <- matrix(3, 2, data = c(2, 1, -2, 0, 1, 9))

B

[,1] [,2]

[1,] 2 0

[2,] 1 1

[3,] -2 9

AB <- A%*%B

AB

[,1] [,2]

[1,] -5 48

[2,] -4 58

Trace:

The trace is simply the sum of the diagonal of a square matrix. For example, if

A
(2×2)

=

[

3 1
2 3

]

, then tr(A) = 6

One can obtain the trace in R using sum(diag(A)) where A is a square matrix.

6

A <- matrix(nrow = 3, ncol = 3, data = c(4,3,2,1,-3,3,7,-8,2),

byrow = T)

A

[,1] [,2] [,3]

[1,] 4 3 2

[2,] 1 -3 3

[3,] 7 -8 2

trace <- sum(diag(A))

trace

[1] 3

Determinant:

A scalar-valued summary function of a square matrix that allows calculation of the inverse of a

matrix (see below) and determines if a matrix is invertible (see below).

The determinant of a matrix A is often denoted det(A) or |A|. The determinant of a matrix

larger than 3×3 is difficult to compute. Methods like the [Laplace expansion] allow fairly intuitive

procedures for calculating the determinant of larger square matrices. The determinant of a 2 × 2
matrix A is

det(A) =

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad− bc

In the expression above, if (0, 0), (a, c), (b, d), (a + b, c + d) represent the vertices of a paral-

lelogram, then the absolute value of the determinant gives the area of the parallelogram. Thus, the

(absolute value) of a determinant can be interpreted as an area/volume summary of a matrix.

Additional insights are possible if we consider a matrix as the result of a linear transformation.

For example,

A
(2×2)

=

[

2 0
0 2

]

= 2 · I

Multiplying the unit square represented by I , by 2, to obtain A, increases its sides two-fold

and increases its area four-fold. We also note that det(A) = 2 ·2−0 = 4. Thus, det(A) represents

the scale factor by which areas are transformed by the ªlinear mapº represented by A.

Importantly,

• det(I) = 1.

• Multiplying any row in a matrix by a number multiplies the determinant by that number.

• det(A · B) = det(A) · det(B).

7

https://en.wikipedia.org/wiki/Laplace_expansion

• det(A) = det(AT).

• In an upper or lower triangular matrix of any size n × n, the determinant is the product of

the diagonal.

• For any matrix A) with two equal rows or columns det(A) = 0, indicating the vectors of A

are linearly dependent, and that the matrix is not invertible (see below).

The determinant of a matrix can be calculated in R using the function det().

A <- matrix(2,2, data = c(2,0,0,2), byrow = T)

A

[,1] [,2]

[1,] 2 0

[2,] 0 2

det(A)

[1] 4

Adjugate matrix:

A manipulation of a square matrix that allows calculation of the inverse of matrix (see below). To

obtain the adjugate of a square matrix A, adj(A), we: 1) obtain the matrix minors by finding the

determinants of 2× 2 sub-matrices of A, and 2) find the matrix of cofactors by changing the sign

of adjacent cells in the matrix of minors, and 3) transposing the matrix of cofactors. For a 2 × 2
matrix:

A =

[

a b

c d

]

adj(A) =

[

d −b
−c a

]

The adjugate of a matrix (larger than 2× 2) can be calculated in R using the function

RConics::adjoint().

library(RConics)

A <- matrix(3,3, data = c(5,7,6,1,5,4,1,3,2), byrow = T)

A

adjoint(A)

8

Inverse:

An n×n square matrix A is invertible if a n×n matrix B exists that allows: A ·B = B ·A = In,

where In is the n × n identity matrix. The inverse of a matrix A can be defined by its adjugate

matrix and determinant. Specifically, if A is invertable:

A
−1 =

1

det(A)
adj(A) (1)

Additionally, If A is invertible:

• (x ·A)−1 = x−1 ·A−1 where x is a non-zero scalar.

• det(A) ̸= 0.

• the number 0 is not an eigenvalue of A (see below).

In addition:

• I
−1 = I

There are a number of ways of computing A
−1. However, because, of the reliance of the

inverse on the determinant and the adjugate matrix, none of them are straightforward for matrices

larger than 2× 2.

Consider the simple case where

A
(2×2)

=

[

3 2
−1 0

]

A
−1

(2×2)
=

1

det(A)
adj(A)

=
1

det(0− (−2) ·
[

0 −2
1 3

]

=

[

0 −2 · 0.5
1 · 0.5 3 · 0.5

]

=

[

0 −1
0.5 1.5

]

The inverse of a matrix can be calculated in R using the function solve().

A <- matrix(2,2,data = c(3,-1,2,0))

solve(A)

[,1] [,2]

[1,] 0.0 -1.0

[2,] 0.5 1.5

9

Eigenanalysis:

For an n× n square matrix A, with eigenvector, v, and eigenvalue, λ, we have:

A · v = λ · v, (2)

There will be n corresponding eigenvalues (λ1, λ2, . . . , λn) and eigenvectors (v1,v2, . . . ,vn) in

the matrix decomposition, and the length (number of rows) of each eigenvector will also equal

n. Spectral decomposition of a matrix through eigenanalysis is often used for the purpose of

dimension reduction in approaches like principal components analysis.

Eigenvector generally refers to a right eigenvector. That is, the eigenvector column vector v

is placed to the right of A in the multiplication, A · v, as defined in Eq.2. The left eigenvector

would result from u ·A, where u is a 1× n row vector.

For a square matrix A,

•
∑n

i=1 λi = tr(A)

•
∏n

i=1 λi = det(A)

• The left and right eigenvectors will only be equal for a symmetric matrix.

Example: As a numerical example, let

A
(2×2)

=

[

1 −2
−2 1

]

Rearranging Eq. 2 we have:

det(A− λ · In) = 0

To solve for λ we have:

[

1 −2
−2 1

]

− λ ·
[

1 0
0 1

]

= 0

∣

∣

∣

∣

1− λ −2
−2 1− λ

∣

∣

∣

∣

= 0

(1− λ)(1− λ)− 4 = 0

(λ2 − 2λ+ 1)− 4 = 0

We have the quadratic equation: λ2 − 2λ− 3 = 0.

Solving this equation for λ (using the quadratic formula), we have the solutions λ1 = 3,

λ2 = −1. These are first two (and in this case, only) eigenvalues.

10

Inserting λ1 into Eq.2 we obtain the first eigenvector

A · v1 = λ1 · v1

[

1 −2
−2 1

]

·
[

x1

y1

]

= 3 ·
[

x1

y1

]

[

1 · x1 + (−2 · y1)
−2 · x1 + (1 · y1)

]

=

[

3 · x1

3 · y1

]

We have two equations:

x1 − 2y1 = 3x1

−2x1 − y1 = 3y1

Rearranging, we have:

−2x1 − 2y1 = 0

−2x1 − 2y1 = 0

Both equations indicate that x1 = −y1. Arbitrarily letting x1 = −1, we have y1 = 1. The

resulting unstandardized first eigenvector is

[

−1
1

]

. Eigenanalysis algorithms generally rescale

eigenvectors so that their sum of squares = 1 (so they have unit length). The scaling coefficient for

the ith eigenvector is found using:

ki =
1

√
∑n

i=1 v
2
i

For our example,

k1 =
1√

−12 + 12
= 0.7071

To get our rescaled eigenvector, we multiply v1 by the scalar, k1. Thus our first scaled eigen-

vector, e1 is:

[

−0.7071
0.7071

]

. To get the second eigenvector, we repeat this process using the second

eigenvalue. We find that e2 =

[

−0.7071
−0.7071

]

:

As with other matrix operations, obtaining eigenvalues and eigenvectors for matrices larger

than 3× 3 is exceedingly difficult to do ªby handº.

Eigenvalues and eigenvectors of a matrix can be obtained in R using the function eigen().

Here are the right-hand eigenvectors

A <- matrix(2,2,data = c(1,-2,-2,1))

eigen(A)

eigen() decomposition

$values

[1] 3 -1

11

$vectors

[,1] [,2]

[1,] -0.7071068 -0.7071068

[2,] 0.7071068 -0.7071068

Here are the left-hand eigenvectors

LH.eigen <- function(A){
eigen(t(A))

}

LH.eigen(A)

eigen() decomposition

$values

[1] 3 -1

$vectors

[,1] [,2]

[1,] -0.7071068 -0.7071068

[2,] 0.7071068 -0.7071068

Because (in this case) A is symmetric, the left and right-hand eigenvectors are the same.

1.3 Graph theory terminology

The graph theory definitions and descriptions given here generally follow Aho et al. (2023).

Graph:

An ostensibly graphical method of representing systems of potentially connected nodes (also

called vertices) (Fig 1).

Figure 1: A simple graph with two connected nodes.

Undirected versus Directed Graph:

With an undirected graph we can assume that communication can occur bidirectionally along

connecting lines (generally called edges) between nodes. Conversely, with a directed graph (or

12

digraph), connections between node (generally called arcs) are assumed to be unidirectional (Fig

2).

A digraph can formally defined as an ordered pair, D = (N,A) where N is a set of nodes and

A is a set of arcs that link the nodes. If z is an arc from node u to node v, we denote this as z = −→uv.

Figure 2: An undirected graph versus a directed graph.

Walk and Path:

If Wk is a walk of length k, from node n0 to node nk, then we have a finite sequence Wk = (N,A)
of the form:

N = {n0, n1, . . . , nk}
A = {−−−→n0, n1,

−−−→n1, n2, . . . ,
−−−−−→nk−1, nk}

where ni and ni+1 are adjacent.

A path is a walk in which no nodes appear more than once, except in the case of a cycle (see

below). In this case, nk can equal to n0.

Cyclic versus Acyclic:

A graph cycle occurs when a path among nodes starts and ends at the same node. An acyclic graph

will have no cycles (Fig 3). The term DAG is often used to indicate a directed acyclic graph.

13

Figure 3: A cyclic graph versus an acyclic graph.

Strongly Connected, Weakly Connected, and Disconnected:

A digraph will be strongly connected if every node is reachable from every other node, weakly

connected if every node is reachable after replacing all oriented arcs with bidirectional links be-

tween adjacent nodes, and disconnected if at least two nodes cannot be connected, even after

applying bidirectional links (Fig 4).

Local versus Global Graph Perspectives:

Graph-theoretic approaches for describing graphs can be separated into local measures that de-

scribe the characteristics of individual nodes or arcs, and global measures that summarize the

characteristics of an entire graph.

Degree:

The local importance of nodes to the functioning of a network can be assessed with a large number

of approaches. The simplest of these is the nodal degree. That is, the number of arcs connected

to a node. In a digraph we can distinguish the indegree and outdegree of a node as the number

of arcs with that node as head and the number of arcs with that node as tail. Thus, the degree of

a node will be the sum of its indegree and outdegree. As an example, in left-hand graph in Fig 4,

node b has degree 4, because indegree + outdegree = 2 + 2 = 4. In the center graph, however, node

b has degree 2, because indegree + outdegree = 1 + 1 = 2.

14

Figure 4: Strongly connected, weakly connected, and disconnected graphs.

Adjacency Matrix:

Graphs can be represented with an n× n adjacency matrix, A, whose entries, Aij indicate that an

arc exists from node i to j with the designation: Aij = 1, or that there is no arc from i to j, with

the designation: Aij = 0.

Consider the central (weakly connected) graph in Fig 4. Its adjacency matrix is:

A
(3×3)

=

a b c








0 1 0 a

0 0 1 b

0 0 0 c

In the matrix above, the numbers characterize whether arcs connect nodes or not. Rows indicate

the starting location (tail) of an arc, and columns indicate the ending location (head) of an arc. The

entry 1 at cell A1,2 indicates the presence of the arc
−→
ab. Note, however, because the adjacency

matrix represents a weakly connected DAG, there is no connecting arc from b to a. That is, while

15

−→
ab exists,

←−
ab does not exist.

Graphs, and their adjacency matrices can be obtained using functions from the R package

igraph. Here we codify the central graph in Fig 4 and obtain its adjacency matrix.

library(igraph)

G <- graph_from_literal(a --+ b --+ c)

A <- as_adjacency_matrix(G, sparse = F)

A

a b c

a 0 1 0

b 0 0 1

c 0 0 0

The adjacency matrix can be used to describe many useful network characteristics. For exam-

ple, the i, j entry in A
k will give the number of paths in the graph from node i to node j, of length

k.

A %*% A

a b c

a 0 0 1

b 0 0 0

c 0 0 0

There is one path of length 2 in the central graph in Fig 4. It goes from node a to node c.

Stream DAGs:

From Aho et al. (2023)

ªStreams networks can be represented using graphs, with streams segments as arcs

bounded by nodes occurring at hydrologically meaningful locations such as sensor

sites, network confluences or splits, sources, sinks. Because they are strongly driven by

hydrological potentials resulting from fixed elevational gradients, graphs that are most

appropriate for describing passive stream network characteristics such as transport and

discharge, will be both directed (with an orientation from sources to sink) and acyclic.º

Graph Weights:

From Aho et al. (2023)

ªNuance and realism can be enhanced in graphs by adding information to nodes

and/or arcs in the form of weights. Weighting information particularly relevant to non-

perennial stream DAGs includes flow rates, instream lengths, probabilities of aquatic

16

organism dispersal, water quality components including nutrients or sediment, up-

stream drainage area, and/or probabilities of surface and subsurface water presence.

Weights can be assessed alongside the strictly topological relationships of nodes and

arcs when describing DAGs.º

Weights can be added to igraph graph objects in several ways. First one can add a weight

attribute to arcs using the function igraph::E() (for edge). For illustration, consider the central

(weakly connected) graph in Fig 4, which has two arcs.

G1 <- G

E(G1)$weight <- c(0.1, 0.2)

The weights should be assigned in the order that they are listed in the E() output. Thus, the

first weight, 0.1, will go with
−→
ab and the second weight, 0.2, will go with

−→
bc .

E(G1)

+ 2/2 edges from 7bfae5d (vertex names):

[1] a->b b->c

Second, one can use the function set edge attr().

weights <- c(0.1, 0.2)

G2 <- set_edge_attr(G, "weight", value = as.numeric(weights))

attr <- "weight"

Third, many igraph functions have an edge weight argument that allows user imputation of

weights.

We see that the inclusion of weights has altered the adjacency matrix. Specifically, weights are

now listed at connecting arc locations (instead of ones).

as_adjacency_matrix(G2, attr = "weight", sparse = F)

a b c

a 0 0.1 0.0

b 0 0.0 0.2

c 0 0.0 0.0

1.4 Infinite Series

Geometric series:

The following is a geometric series:

∞
∑

n=1

arn−1 = a+ ar + ar2 + · · ·

17

If |r| < 1, then the infinite series converges to:

∞
∑

n=1

arn−1 =
a

1− r

If |r| ≥ 1, then the series is divergent.

2 Alpha centrality

2.1 Motivation and Derivation

In a graph theoretic representation (see Section 1.3), degree centrality is simply the degree of a

node. Eigenvector centrality refers to the corresponding entry of a node in the principal eigen-

vector of the graph adjacency matrix. This method extends degree centrality by accounting for a

node’s connection to nodes that are themselves important to the network (Newman, 2018). Eigen-

vector centrality, however poses a number of problems for stream DAGs (Aho et al., 2023).

1. First, the adjacency matrix of a DAG will be asymmetric, and will thus possess distinct left-

and right-hand eigenvectors.

2. Second, ªsource nodesº, which must have indegree zero, will drive all downstream nodes to

also have an eigenvector centrality of zero (Newman, 2018).

Alpha centrality and Katz centrality address several of these issues. Alpha centrality can be

defined as the infinite series:

x =
∞
∑

k=0

(

αk(AT)
k
)

· 1 =
∞
∑

k=0

(αAT)k · 1 (3)

where x is a vector of resulting alpha-centralities for each graph node, AT is the transposed

n× n graph adjacency matrix, 1 is a column vector of ones with n entries, and α is a user-defined

scalar.

Expanding Eq 3 we have:

x =
∞
∑

k=0

(αAT)k · 1 = (I + αAT + (αAT)2 + · · ·) · 1 (4)

where I is the n × n identity matrix. If this sum converges, then, under the geometric series

(Section 1.4), we can use the matrix notation2:

x =
(

I − αAT
)

−1 · 1 (5)

2Newman (2018) and other sources (including Aho et al. (2023), who probably based their definition on Newman

(2018)), leave out the transpose of A. This transpose (for the form of A and 1 used here) is required, however, to

calculate alpha-centrality correctly.

18

Alpha-centrality provides a ªfree centralityº (often termed β) to all nodes, regardless of their

topology. For convenience, β is generally taken to be 1, resulting in the form of alpha-centrality

shown in Eq. 5. The α parameter specifies the balance between eigenvector centrality and the

ªfree centralityº. As α increases, the ªfree centralityº is de-emphasized compared to eigenvector

centrality.

2.2 α

Calculation of alpha-centrality requires specification of the α scalar in Eq. 5. Katz (1953) recom-

mended that α be in (0,1). This would allow one to essentially de-emphasize longer paths in the

network when computing the centrality of nodes (see below). The α term often defaults to 1 in

α-centrality computational algorithms, including those in igraph and streamDAG, which wraps the

function igraph::alpha centrality.

As α → 0, αAT drops from Eq. 5, and all nodes will have an alpha-centrality of one, be-

cause I
−1 = I . When α equals the reciprocal of the of the largest eigenvalue of A, non-finite

alpha-centrality outcomes will occur (Newman, 2018). As general guidance, one can set α to be

slightly less than λ−1
max to obtain outcomes that are numerically similar to those from conventional

eigenvector centrality. Unfortunately, this guidance is not useful for DAGs for the very reason that

alpha-centrality was developed in the first place: a useful eigendecomposition will not exist for A.

Because alpha-centrality equals degree centrality in the limit α → 0, and equals eigenvector

centrality in the limit α → λ−1
max, these measures can both be viewed as special cases of alpha-

centrality (Newman, 2018).

2.3 Mechanics of Alpha-centrality

The mechanics of alpha-centrality become evident upon deconstructing Eq. 5.

• If the underlying graph is unweighted (Section 1.3), the elements of its adjacency matrix A

will be ones if they represent a connecting arc and zero otherwise.

• The operation αAT results in values of α being set for connecting arcs, if we let columns

represent the start of the arc and rows represent the end of the arc. The opposite of the

conventional interpretation.

• The difference I − αAT results in an n × n matrix with ones on the diagonal (if there are

no self-looping nodes in the graph) and −α at connecting arcs. For a stream DAG, these

negative values will now generally occur in the lower triangle.

• Let:

B = I − αAT

19

The inverse B
−1 will also be an n× n matrix. The rows of B−1 represent paths associated

with a particular node, along with an additional 1 (representing ªfree centralityº) on the

diagonal. The appearance of ones at existing paths follows from the form of Alpha-centrality

given in Eq 3. Specifically, because it tracks the infinite sum of matrix powers, B−1, counts

the number of walks of any length starting from node represented by jth column of B−1,

and ending at the node represented by the ith row, adjusted by the corresponding power of

the decay parameter, α.

• The complete operation B
−1 · 1 results in a n× 1 column vector comprised of the row sums

of B−1.

2.4 Introductory Example

Assume that we wish to calculate alpha-centrality for the DAG in Fig 5

4

3

2

14

3

2

1

Figure 5: Simple unbranched DAG.

• We let α = 1.

alpha <- 1

• Here we codify the graph, and view its adjacency matrix.

20

G <- graph_from_literal(4 --+ 3 --+ 2 --+ 1)

A <- as_adjacency_matrix(G, sparse = F)

A

4 3 2 1

4 0 1 0 0

3 0 0 1 0

2 0 0 0 1

1 0 0 0 0

• Here is α(= 1) times the transpose of the adjacency matrix.

alpha * t(A)

4 3 2 1

4 0 0 0 0

3 1 0 0 0

2 0 1 0 0

1 0 0 1 0

• And here is I − αAT

I <- matrix(0,4,4); diag(I) <- 1

I - (alpha * t(A))

4 3 2 1

4 1 0 0 0

3 -1 1 0 0

2 0 -1 1 0

1 0 0 -1 1

• Let B = I −αAT , then B
−1 will also be an n×n matrix, whose rows now represent paths

associated with a particular node (along with an additional one on the diagonal, representing

the ºfree centralityº assigned to each node).

B <- I - (alpha * t(A))

solve(B)

4 3 2 1

4 1 0 0 0

3 1 1 0 0

2 1 1 1 0

1 1 1 1 1

21

• B
−1 · 1 results in a n × 1 column vector comprised of the row sums of B−1. These are the

alpha centralities for each node.

one <- matrix(4,1, data = rep(1,4))

solve(B) %*% one

[,1]

4 1

3 2

2 3

1 4

2.5 The Effect of α

Assume that we wish to obtain alpha-centralities for the simple DAG in Fig 5, but wish to use

α = 0.5.

• We have:

A <- as_adjacency_matrix(G, sparse = F)

alpha <- 0.5

alpha * t(A)

4 3 2 1

4 0.0 0.0 0.0 0

3 0.5 0.0 0.0 0

2 0.0 0.5 0.0 0

1 0.0 0.0 0.5 0

• Subtracting this product from I results in:

I <- matrix(0,4,4); diag(I) <- 1

B <- I - alpha * t(A)

B

4 3 2 1

4 1.0 0.0 0.0 0

3 -0.5 1.0 0.0 0

2 0.0 -0.5 1.0 0

1 0.0 0.0 -0.5 1

• And the inverse of B is:

22

solve(B)

4 3 2 1

4 1.000 0.00 0.0 0

3 0.500 1.00 0.0 0

2 0.250 0.50 1.0 0

1 0.125 0.25 0.5 1

• As before, the row sums of B−1 give the alpha-centralities.

solve(B) %*% rep(1,4)

[,1]

4 1.000

3 1.500

2 1.750

1 1.875

It is clear that for a DAG with order n, and no branching (no joins or splits), we will have the

following matrix framework for B−1

B
−1

(n×n)
= (I − αAT)−1 =























1.0 0 0 0 0 · · · 0
α 1.0 0 0 0 · · · 0
α2 α 1.0 0 0 · · · 0
α3 α2 α 1.0 0 · · · 0
α4 α3 α2 α 1.0 · · · 0
...

...
...

...
...

. . .
...

αn−1 αn−2 αn−3 αn−4 αn−5 · · · 1.0























(6)

Thus, paths given in the off-diagonal elements of B−1 are weighted by α raised to the power

of the path length.

• For α ∈ (0, 1], longer paths will have less influence when calculating alpha-centrality for

a node. A path with maximum length (n − 1) will have minimum weight, αn−1, whereas

a path with minimum length, 1, will have maximum weight α. For this reason α has been

called a decay parameter.

• Specifying α = 1 will cause α to drop out of Eq. 5, and all paths will have the same α

(non-)weighting, regardless of length.

2.6 The Effect of Branching

Lets now consider the effect of network branching on alpha-centrality using a graph with a join

(Fig 6A), and a graph with a split and join (an island) (Fig 6B).

23

7

6

5

3
4

2

1

7
6

5

3

4

2

1 A 7

6

5

4

3

2

17

6

5
4

3

2

1 B

Figure 6: Simple branched DAGs.

• We have:

graph_A <- graph_from_literal(7 --+ 6 --+ 5 --+ 3,

4 --+ 3, 3--+ 2, 2--+ 1)

graph_B <- graph_from_literal(7 --+ 6 --+ 5, 6 --+ 4,

5 --+ 3, 4 --+ 3, 3--+ 2, 2--+ 1)

• The adjacency matrices are:

A_A <- as_adjacency_matrix(graph_A, sparse = F)

A_A

7 6 5 3 4 2 1

7 0 1 0 0 0 0 0

6 0 0 1 0 0 0 0

5 0 0 0 1 0 0 0

3 0 0 0 0 0 1 0

4 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

A_B <- as_adjacency_matrix(graph_B, sparse = F)

A_B

7 6 5 4 3 2 1

7 0 1 0 0 0 0 0

6 0 0 1 1 0 0 0

5 0 0 0 0 1 0 0

4 0 0 0 0 1 0 0

3 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

24

Note that joins show up as multiple ones in adjacency matrix columns (see column for node

3 in A A) and splits appear as multiple ones in rows (see row for node 6 in A B).

• Letting α = 1, we find I − αAT

alpha <- 1

I <- matrix(0,7,7); diag(I) <- 1

I - (alpha * t(A_A))

7 6 5 3 4 2 1

7 1 0 0 0 0 0 0

6 -1 1 0 0 0 0 0

5 0 -1 1 0 0 0 0

3 0 0 -1 1 -1 0 0

4 0 0 0 0 1 0 0

2 0 0 0 -1 0 1 0

1 0 0 0 0 0 -1 1

I - (alpha * t(A_B))

7 6 5 4 3 2 1

7 1 0 0 0 0 0 0

6 -1 1 0 0 0 0 0

5 0 -1 1 0 0 0 0

4 0 -1 0 1 0 0 0

3 0 0 -1 -1 1 0 0

2 0 0 0 0 -1 1 0

1 0 0 0 0 0 -1 1

And B
−1 where B = I − αAT .

B_A <- I - alpha * t(A_A)

solve(B_A)

7 6 5 3 4 2 1

7 1 0 0 0 0 0 0

6 1 1 0 0 0 0 0

5 1 1 1 0 0 0 0

3 1 1 1 1 1 0 0

4 0 0 0 0 1 0 0

2 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

B_B <- I - alpha * t(A_B)

solve(B_B)

25

7 6 5 4 3 2 1

7 1 0 0 0 0 0 0

6 1 1 0 0 0 0 0

5 1 1 1 0 0 0 0

4 1 1 0 1 0 0 0

3 2 2 1 1 1 0 0

2 2 2 1 1 1 1 0

1 2 2 1 1 1 1 1

Note that there are no paths to node 4 from nodes 7, 6, 5, and 3 in graph A, and that there

are two paths to nodes 1, 2, and 3 from nodes 7, 6, 5 in graph B.

• As before, row sums of B−1 provide alpha-centralities.

solve(B_A) %*% rep(1, 7)

[,1]

7 1

6 2

5 3

3 5

4 1

2 6

1 7

solve(B_B) %*% rep(1, 7)

[,1]

7 1

6 2

5 3

4 3

3 7

2 8

1 9

2.7 The Combined Effect of α and Branching

We now consider the interplay of α and branching:

• In particular, we let α = 0.5 and calculate alpha-centralities for the graphs in Fig 6

26

alpha <- 0.5

I <- matrix(0,7,7); diag(I) <- 1

B_A <- I - (alpha * t(A_A))

B_B <- I - (alpha * t(A_B))

solve(B_A)

7 6 5 3 4 2 1

7 1.00000 0.0000 0.000 0.00 0.000 0.0 0

6 0.50000 1.0000 0.000 0.00 0.000 0.0 0

5 0.25000 0.5000 1.000 0.00 0.000 0.0 0

3 0.12500 0.2500 0.500 1.00 0.500 0.0 0

4 0.00000 0.0000 0.000 0.00 1.000 0.0 0

2 0.06250 0.1250 0.250 0.50 0.250 1.0 0

1 0.03125 0.0625 0.125 0.25 0.125 0.5 1

solve(B_B)

7 6 5 4 3 2 1

7 1.0000 0.000 0.000 0.000 0.00 0.0 0

6 0.5000 1.000 0.000 0.000 0.00 0.0 0

5 0.2500 0.500 1.000 0.000 0.00 0.0 0

4 0.2500 0.500 0.000 1.000 0.00 0.0 0

3 0.2500 0.500 0.500 0.500 1.00 0.0 0

2 0.1250 0.250 0.250 0.250 0.50 1.0 0

1 0.0625 0.125 0.125 0.125 0.25 0.5 1

• A resemblance to the basic unbranched framework for B−1 shown in Eq. 6 remains, al-

though it is now more difficult to discern. For instance, in graph A the path from node 7

to node 2 has length 4 (Fig 6A), so it is given weight α4 = 0.54 = 0.0625 in the B
−1 ma-

trix for graph A (intersection of row 6 and column 1). There is no path between nodes 7

and 4 in graph A, so this path is given weight 0 in the B
−1 matrix for graph A (intersec-

tion of row 5 and column 1). In graph B there are two ways to get from node 7 to node

2, and both of these have length 4 (Fig 6B). Thus, the resulting weight for this connection

is 2 · 0.54 = 0.125 in the B
−1 matrix for graph B (intersection of row 6 and column 1).

Likewise, there are two paths from node 7 to node 1 and both of these have length 5, so we

have the weight 2 · 0.55 = 0.0625 for this path (intersection of row 7 and column 1).

2.8 Interpreting Alpha-centrality in Stream DAGs

2.8.1 Unweighted DAGs

As additional unweighted graph examples, consider the stream DAGs in Fig 7. The relationship

between the alpha-centrality (for three different values of α), the number of paths, and upstream

27

network order for the outlet node (i.e., node 1) for each of the DAGs shown in Fig 7, is given in

Table 1.

Note that in the special (but frequently observed) case that a graph is unweighted, and α =
1, alpha centrality will be the number of paths to a node, plus 1 (Table 1). Thus a reasonable

modification to Eq. 5 would be:

x1 =
(

I − αAT
)

−1 · 1− 1, or

x1 =
{

(

I − αAT
)

−1 − I

}

· 1
(7)

As shown in Section 2.6 and 2.7, network splits followed by joins (resulting from islands)

increase the number of paths to the outlet. For a stream DAG in the absence of conjoined splits

and joins, the alpha-centrality of a stream DAG node will also be the order (the number of nodes)

in the intact network upstream, plus one.

Also apparent in Table 1 is the effect of varying the α parameter in Eq. 5. Note that as α goes

toward zero, the alpha-centrality of the outlet node decreases (it approaches the free centrality of

1 given to all nodes) because, even though the outlets will have more paths than any other node,

longer paths associated with the outlet are down-weighted.

Table 1: Summary of outlet nodes (node 1) for DAGs in Fig 7. Alpha centralities calculated using

α = 1, α = 0.75, and α = 0.5.

Graph Alpha-centrality Paths Order

α = 0.5 α = 0.75 α = 1.0
A 1.50 1.75 2.00 1.00 1.00

B 1.75 2.31 3.00 2.00 2.00

C 2.00 3.16 5.00 4.00 4.00

D 2.44 4.46 8.00 7.00 7.00

E 2.50 4.77 9.00 8.00 8.00

F 3.00 5.52 10.00 9.00 9.00

G 2.25 4.21 8.00 7.00 7.00

H 2.31 4.69 10.00 9.00 8.00

I 2.34 5.04 12.00 11.00 9.00

2.8.2 Weighted DAGs

In addition to modifying α which (if α ∈ (0, 1]) will diminish the importance of a path as a func-

tion of its length, numerical information can be added to stream DAG arcs, reflecting specific arc

characteristics (e.g., flow rates, instream lengths). The result is a weighted graph.

From the perspective of alpha-centrality, weighting modifies the adjacency matrix A in Eq. 5,

so that weights occur at cells representing connecting arcs, instead of ones.

As a relatively complex weighted example, consider the intermittent stream DAG in Fig 8,

with 19 nodes and 18 arcs. Here, arcs are weighted by the probability of surface water at that arc

(numbers above arcs).

28

2

1

2

1

A 3

2

1

3

2

1

B

4

3

5

2

1 4

3

5

2

1

C

8

2

7

6

3

4

5

1

8

2

7

6

3

4

5

1 D 8

6

7

3
4

5
2

9

1

8

6

7

3

4

5

2

9

1

E 8

6

7

3

4

5

2

9

10

1

8

6

7

3 4

5

2

9

10

1

F

7

5

6

3
4

2

1 7

5
6

3

4

2

1 G 8

7

5

6

3

4

2

18

7

5

6

3

4

2

1

H 9

8

7

5

6

3

4

2

1

9
8

7

5

6

3

4

2

1 I

Figure 7: Example stream DAGs. Note that the outlet node has the label 1 in each DAG.

• As before, we define define the graph using igraph scripts.

G <- graph_from_literal(a --+ c, c --+ e, e --+ f, f --+ p,

p --+ q, q --+ r,

b --+ d, d --+ e,

g --+ i, i --+ j, i --+ k, k --+ m,

j --+ m, m --+ n, n--+ o, o --+ p,

h --+ l, l --+ n)

weight.matrix <- data.frame(matrix(ncol = 2, nrow = 18, data = c(

"a->c", 0.2, "c->e", 0.2, "e->f", 0.2, "f->p", 0.5, "p->q", 0.7,

"q->r", 0.9, "b->d", 0.1, "d->e", 0.3, "g->i", 0.2, "i->j", 0.1,

"i->k", 0.6, "j->m", 0.5, "k->m", 0.5, "m->n", 0.4, "n->o", 0.3,

"o->p", 0.2, "h->l", 0.1, "l->n", 0.3), byrow = T))

names(weight.matrix) <- c("Arc", "Weight")

weight.matrix$"Weight" <- as.numeric(weight.matrix$"Weight")

29

Figure 8: Example stream DAG. Numbers above arcs are probabilities of segment presence.

• We will let α = 1.

alpha <- 1

• Here is the adjacency matrix.

A <- as_adjacency_matrix(G, sparse = F)

A

a c e f p q r b d g i j k m n o h l

a 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

p 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

q 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

d 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

j 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

30

m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

o 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

• To set graph weights I use:

W <- G

weights <- weight.matrix[,2]

W <- set_edge_attr(W, "weight", value = as.numeric(weights))

attr <- "weight"

• Note that weighting graph arcs has radically changed the form of the adjacency matrix, now
termed D. Specifically, weights are now listed at connecting arc locations, instead of ones.

D <- as_adjacency_matrix(W, attr = attr, sparse = FALSE)

D

a c e f p q r b d g i j k m n o h l

a 0 0.2 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

c 0 0.0 0.2 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

e 0 0.0 0.0 0.2 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

f 0 0.0 0.0 0.0 0.5 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

p 0 0.0 0.0 0.0 0.0 0.7 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

q 0 0.0 0.0 0.0 0.0 0.0 0.9 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

r 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

b 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.1 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

d 0 0.0 0.3 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

g 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.2 0.0 0.0 0.0 0.0 0.0 0 0.0

i 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.1 0.6 0.0 0.0 0.0 0 0.0

j 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.5 0.0 0.0 0 0.0

k 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.5 0.0 0.0 0 0.0

m 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.4 0.0 0 0.0

n 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.3 0 0.0

o 0 0.0 0.0 0.0 0.2 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0

h 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.1

l 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.3 0.0 0 0.0

• Here I calculate B = I − αDT

I <- matrix(0, nrow = nrow(D), ncol = ncol(D)); diag(I) <- 1

B <- I - alpha * t(D)

• And here is B−1

31

solve(B)

a c e f p q r b d g i

a 1.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0000000 0.000000

c 0.20000 1.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0000000 0.000000

e 0.04000 0.2000 1.000 0.000 0.00 0.0 0 0.03000 0.3000 0.0000000 0.000000

f 0.00800 0.0400 0.200 1.000 0.00 0.0 0 0.00600 0.0600 0.0000000 0.000000

p 0.00400 0.0200 0.100 0.500 1.00 0.0 0 0.00300 0.0300 0.0016800 0.008400

q 0.00280 0.0140 0.070 0.350 0.70 1.0 0 0.00210 0.0210 0.0011760 0.005880

r 0.00252 0.0126 0.063 0.315 0.63 0.9 1 0.00189 0.0189 0.0010584 0.005292

b 0.00000 0.0000 0.000 0.000 0.00 0.0 0 1.00000 0.0000 0.0000000 0.000000

d 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.10000 1.0000 0.0000000 0.000000

g 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 1.0000000 0.000000

i 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.2000000 1.000000

j 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0200000 0.100000

k 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.1200000 0.600000

m 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0700000 0.350000

n 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0280000 0.140000

o 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0084000 0.042000

h 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0000000 0.000000

l 0.00000 0.0000 0.000 0.000 0.00 0.0 0 0.00000 0.0000 0.0000000 0.000000

j k m n o h l

a 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

c 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

e 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

f 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

p 0.01200 0.01200 0.02400 0.0600 0.200 0.001800 0.01800

q 0.00840 0.00840 0.01680 0.0420 0.140 0.001260 0.01260

r 0.00756 0.00756 0.01512 0.0378 0.126 0.001134 0.01134

b 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

d 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

g 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

i 0.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

j 1.00000 0.00000 0.00000 0.0000 0.000 0.000000 0.00000

k 0.00000 1.00000 0.00000 0.0000 0.000 0.000000 0.00000

m 0.50000 0.50000 1.00000 0.0000 0.000 0.000000 0.00000

n 0.20000 0.20000 0.40000 1.0000 0.000 0.030000 0.30000

o 0.06000 0.06000 0.12000 0.3000 1.000 0.009000 0.09000

h 0.00000 0.00000 0.00000 0.0000 0.000 1.000000 0.00000

l 0.00000 0.00000 0.00000 0.0000 0.000 0.100000 1.00000

• As before, the row sums of B−1 give the alpha-centralities.

solve(B) %*% rep(1,nrow(D))

[,1]

a 1.000000

c 1.200000

e 1.570000

32

f 1.314000

p 1.994880

q 2.396416

r 3.156774

b 1.000000

d 1.100000

g 1.000000

i 1.200000

j 1.120000

k 1.720000

m 2.420000

n 2.298000

o 1.689400

h 1.000000

l 1.100000

It is possible to trace entries in B
−1 (in the previous R output) to the graphical representation

in Fig 8. For example, the arc −→ac has path length 1, and so the weight (probability of stream

presence) for this arc, 0.2 (Fig 8), is given directly in B
−1 (intersection of row c and column a).

The path −→ace is comprised of two vectors, −→ac and −→ae, and each of these has weight 0.2 (Fig 8).

Thus, the weight given to the path −→ace is 0.2 × 0.2 = 0.04 (intersection of row e and column

a). As a more complex example, there are two paths from node g to node n: g, i, j,m, n and

{g, i, k,m, n} (Fig 8). The accumulated weights for these paths are: 0.2 · 0.1 · 0.1 · 0.4 = 0.0008
and 0.2·0.6·0.5·0.4 = 0.024 (Fig 8). Thus, the weight reported in B

−1 for the connection between

g and n, is 0.0008 + 0.0248 = 0.0248 (intersection of row n and column g).

Clearly, even though the α parameter is being dropped here by letting it equal one, the effect

of path length is still be being expressed in the path weights given in B
−1. Specifically, if weights

are in (0, 1] paths of greater length will be increasingly down-weighted in the calculation of alpha-

centrality, and will be further decreased if one specifies α ∈ (0, 1], because the initial weights will

be multiplied by a proportion. Conversely, if weights are greater than one, longer path lengths will

be exponentially up-weighted/emphasized when calculating alpha-centrality!!

References

Aho, K., Kriloff, C., Godsey, S.E., Ramos, R., Wheeler, C., You, Y., Warix, S., Derryberry, D.,

Zipper, S., Hale, R.L. et al. (2023) Non-perennial stream networks as directed acyclic graphs:

The r-package streamdag. Environmental Modelling & Software, 167, 105775.

Bonacich, P. & Lloyd, P. (2001) Eigenvector-like measures of centrality for asymmetric relations.

Social networks, 23, 191±201.

Katz, L. (1953) A new status index derived from sociometric analysis. Psychometrika, 18, 39±43.

Newman, M. (2018) Networks. Oxford university press.

33

	Introduction
	Matrix terminology
	Scalar
	Matrix
	Column vector
	Row vector
	Square matrix
	Major diagonal
	Triangular matrix
	Diagonal matrix
	Identity matrix

	Matrix operations
	Addition and subtraction
	Transpose
	Symmetric matrix
	Multiplication
	Trace
	Determinant
	Adjugate matrix
	Inverse
	Eigenanalysis

	Graph theory terminology
	Graph
	Undirected vs directed graph
	Walk and Path
	Cyclic vs acyclic graph
	Strongly connected, weakly connected, and disconnected graph
	Local vs Global graph Perspectives
	Degree
	Adjacency matrix
	Stream DAG
	Weighted graph

	Infinite Series
	Geometric-series

	Alpha centrality
	Motivation and Derivation
	
	Mechanics of Alpha-centrality
	Introductory Example
	The Effect of
	The Effect of Branching
	The Combined Effect of and Branching
	Interpreting Alpha-centrality in Stream DAGs
	Unweighted DAGs
	Weighted DAGs

