Alpha-centrality in the context of stream DAGs

Ken Aho
October 12, 2025

Contents

1 Introduction 2
1.1 Matrix terminology e e e e e e 2
Scalar e 2
Matrix e e e e e 2
Column vector e e 3

Row vector e 3
Square matriX e e e e e e 3
Majordiagonal L 3
Triangular matrix 3
Diagonal matrix e 3
Identity matrix e e e 4

1.2 MatriX Operations v v v vt e e e e e e e e e e e e e e e 4
Addition and subtraction L L oL oL oL 4
Transpose L e e e e e 4
Symmetric matriXo e e e e e e e e e e 5
Multiplication e 5
Trace 6
Determinant L e 7
Adjugate matrix L. e e e e e e 8
Inverse L 9
Eigenanalysis e e 10

1.3 Graph theory terminology L. 12
Graph e e e e 12
Undirected vs directed graph L L L L 12
WalkandPath 13
Cyclicvsacyclicgraph e 13
Strongly connected, weakly connected, and disconnected graph 14
Local vs Global graph Perspectives 14
Degree L 14
Adjacency matrixo e e 15
Stream DAG e 16

Weighted graph L 16

1.4 Infinite Series e e e e e e e 17
GEOMELIiC-SEeTIES . . . « . v v v v v et e e e e e e e e e e e e e e 17

2 Alpha centrality 18
2.1 Motivation and Derivation Lo 18
22 O 19
2.3 Mechanics of Alpha-centrality L. 19
24 Introductory Example 20
25 TheEffectof o 22
2.6 The Effectof Branching, 23
2.7 The Combined Effect of « and Branching 26
2.8 Interpreting Alpha-centrality in Sream DAGs 27
2.8.1 Unweighted DAGs 27

2.82 Weighted DAGs e 28

1 Introduction

This document tries to provide a background concerning the workings of the Katz centrality (Katz,
1953) and a-centrality (Bonacich & Lloyd, 2001) which are essentially identical, and provide the
same rank order of centrality measures. Particular emphasis is given to directed acyclic graph rep-
resentations of stream networks (stream DAGs). The content is intended for a general audience
and so background concerning matrix terminology (Section 1.1), matrix operations (Section 1.2)
and graph theory terminology (Section 1.3) is provided. The geometric infinite series, vital for un-
derstanding the translation of alpha-centrality to a linear algebra format, is summarized in Section
1.4.

1.1 Matrix terminology
Scalar:

An entity that can be represented by a single number. Scalars are generally denoted with lower-case
italicized letters. For instance, x = 3.

Matrix:
A rectangular array whose elements are arranged into a table with ¢ = 1,2,3,...,m rows and
7 = 1,2,3...,n columns. Matrices are generally denoted with capitalized bold letters. The

matrix A below has m = 3 rows and n = 3 columns. That is, A has dimension (3 x 3).

4 3 2
A =|1 -3 3
@317 -8 2

The term a;; represents the element at the intersection of the ith row and the jth column. For
example, a; o = —3 in A.

Column vector:

A matrix made up a single column. Vectors (representing a column or row) are generally denoted
with a lower-case bold letter (or number). For example, a is a column vector, and 1 is a column
vector of ones.

I
S N W
©
Xt
=
I
| — |
[—
| S

a
(3x1)

Row vector:

A matrix made up a single row. For example, b is a row vector.

b =[3 7 6

(1x3)

Square matrix:

A matrix with the same number of rows and columns. Thus, the matrix A above is a square matrix.

Major diagonal:

Often simply called the diagonal, the entity comprises the a;; elements of a square matrix. For
instance, the diagonal of A above is {4, —3,2}.

Triangular matrix:

The tabular triangle of data below the diagonal is the lower triangle. The tabular triangle above the
diagonal is the upper triangle. The matrices L and U below are are the lower and upper triangle
matrices of A, respectively.

4 0 O 4 1 7
L =|1 -3 o, U =0 -3 -8
(3x3) 7 _8 9 (3x3) 0 0 9

Note that the diagonal is included in both triangular matrices.

Diagonal matrix:

A square matrix with only zeroes on off-diagonal elements. The matrix B is a diagonal matrix.

(3x3)

1
B = |0
0

o NN O
N OO

Identity matrix:
A diagonal matrix with ones on the diagonal. The identity matrix is generally denoted I:
10

I =101

(3x3) 00

The identity matrix is often denoted I,,, indicating it has dimensions n X n. Thus, I, is the
2 x 2 identity matrix.

0
0
1

e If Aisann x n matrix, I,,,- A = A - I, = A. Thus, I serves as the matrix equivalent of a
scalar one.

e I,-1,=1,.

* All rows and columns in I, are linearly independent.

1.2 Matrix operations
Addition and subtraction:

The sum or difference of two matrices with the same dimensions is calculated element-wise. That
is, if

4 3 2 0 1 2
A =11 -3 3 and B =12 4 6
(3%3) 7 _8 9 (3x3) 1 92 _9
4 2 0
A-B=|-1 -7 -3
(33) —8 —10 4

To add or subtract a scalar to or from a matrix, one simply performs the arithmetic with every
element in the matrix. For instance, if x = 2, then:

2 1 0
r—B=|0 -2 —4

Transpose:

The transpose of an m x n matrix A is the n x m matrix AT which is results form converting rows
into columns, and vice versa. That is, if

4 3 2 4 1 7
A =11 -3 3 then AT =3 -3 -8
(3x3) 7 _8 9 (3x3) 3 3 9

The transpose function in Ris t () :

A <- matrix(nrow = 3, ncol = 3, data = ¢(4,3,2,1,-3,3,7,-8,2),
byrow = T)

A

[,11 [,2] [,3]
[1,] 4 3 2
[211 1 _3 3
[3,] 7 -8 2
t (A)

[,1] [,2] [,3]
(1,1 4 1 7
[2,] 3 -3 -8
[3,] 2 3 2

Symmetric matrix:

A square matrix in which A = AT, because its upper and lower triangles are “reflections” of each
other. The matrix A below is symmetric.

4 1 7
A =1 -3 -8
@37 -8 2
If A= —AT, then A is a skew-symmetric matrix.

Multiplication:

* Multiplication of two matrices is defined if the number of columns of the multiplicand (left

matrix) is equal to the number of rows in multiplier (right matrix). Thus, while (A By
2x3 3x1

exists, (B : . (A : does not exist. That is (unlike scalar multiplication), matrix multiplication
3x1 2x3

1S not commutative.

o If Aisan (m x n) matrix and B is an (n x p) matrix, then A - B is the (m x p) matrix'
whose entries are given by the dot product (sum of element-wise vector products) of the
corresponding row of A and the corresponding column of B.

For instance, if

la ¢ le g n_ |laetcf) (ag+ch)
= [b d]’ and B = [f h}’ then A B=1(ctdf) (bg+dn)|

!That is, the number of columns in A - B will equal the number of columns in B, and the number of rows in A - B
will be the number of rows in A.

As a numerical example, if

31 1 (3-14+1-1) 4
A = d 1 = th A-1= = :
(2x2) [2 3] > an (2x1) {1} » el (2x1) [(2 143 1)} {5}

Thus, multiplying an m X n matrix by an n x 1 column vector of ones, results in an n x 1
column vector of row sums from the first matrix.

To multiply a scalar by a matrix, or multiply a matrix by a scalar, one simply performs
the arithmetic to every element in the matrix. That is, this operation is commutative. For
instance, if x = 2 then:

e |

(2x2)

The matrix multiply operator in R is $+%.

A <- matrix (2, 3, data = e¢(1, 2, 3, 4, 5, 6))

B

[,11 [,2]
[1,] 2 0
(2,1 1 1
[3,] =2 9
AB <— A%x%%B
AR

[,11 [,2]
(1,1 =5 48
(2,] -4 58
Trace:

The trace is simply the sum of the diagonal of a square matrix. For example, if

31
(21;42) = [2 3] , then tr(A)=6

One can obtain the trace in R using sum (diag (A)) where A is a square matrix.

6

A <- matrix(nrow = 3, ncol = 3, data = ¢(4,3,2,1,-3,3,7,-8,2),

byrow = T)
A
[,11 [,2] [,3]
[1,]1] 4 3 2
[2,] 1 -3 3
[3,]1] 7 = 2

trace <- sum(diag(A))
trace

[1] 3

Determinant:

A scalar-valued summary function of a square matrix that allows calculation of the inverse of a
matrix (see below) and determines if a matrix is invertible (see below).

The determinant of a matrix A is often denoted det(A) or |A|. The determinant of a matrix
larger than 3 x 3 is difficult to compute. Methods like the [Laplace expansion] allow fairly intuitive
procedures for calculating the determinant of larger square matrices. The determinant of a 2 x 2
matrix A is

det(4) = |*

In the expression above, if (0,0), (a,c), (b,d), (a + b, c + d) represent the vertices of a paral-
lelogram, then the absolute value of the determinant gives the area of the parallelogram. Thus, the
(absolute value) of a determinant can be interpreted as an area/volume summary of a matrix.

‘:ad—bc

Additional insights are possible if we consider a matrix as the result of a linear transformation.

For example,
20
A = = 2.1
(2x2) {O 2}

Multiplying the unit square represented by I, by 2, to obtain A, increases its sides two-fold
and increases its area four-fold. We also note that det(A) = 2-2—0 = 4. Thus, det(A) represents
the scale factor by which areas are transformed by the “linear map” represented by A.

Importantly,
o det(I) = 1.
e Multiplying any row in a matrix by a number multiplies the determinant by that number.

o det(A - B) =det(A) - det(B).

https://en.wikipedia.org/wiki/Laplace_expansion

o det(A) = det(AT).

* In an upper or lower triangular matrix of any size n x n, the determinant is the product of
the diagonal.

* For any matrix A) with two equal rows or columns det(A) = 0, indicating the vectors of A
are linearly dependent, and that the matrix is not invertible (see below).

The determinant of a matrix can be calculated in R using the function det ().

A <- matrix (2,2, data = ¢(2,0,0,2), byrow = T)

A
[,11 [,2]

[1,] 2 0

(2] 0 2

det (1)

[1] 4

Adjugate matrix:

A manipulation of a square matrix that allows calculation of the inverse of matrix (see below). To
obtain the adjugate of a square matrix A, adj(A), we: 1) obtain the matrix minors by finding the
determinants of 2 x 2 sub-matrices of A, and 2) find the matrix of cofactors by changing the sign
of adjacent cells in the matrix of minors, and 3) transposing the matrix of cofactors. Fora 2 x 2

matrix:
a b
a=o]

adj(A) = { § _b]

—C a

The adjugate of a matrix (larger than 2 x 2) can be calculated in R using the function
RConics::adjoint ().

library (RConics)

A <- matrix (3,3, data = ¢(5,7,6,1,5,4,1,3,2), byrow = T)
A

adjoint (A)

Inverse:

An n x n square matrix A is invertible if a n x n matrix B exists that allows: A-B=B-A =1,
where I,, is the n X n identity matrix. The inverse of a matrix A can be defined by its adjugate
matrix and determinant. Specifically, if A is invertable:

1

A=
det(A)

adj(A) ey
Additionally, If A is invertible:

s (x-A)"' =27'- A7 where x is a non-zero scalar.

* det(A) # 0.

¢ the number 0 is not an eigenvalue of A (see below).

In addition:

I''=1

There are a number of ways of computing A~'. However, because, of the reliance of the
inverse on the determinant and the adjugate matrix, none of them are straightforward for matrices
larger than 2 x 2.

Consider the simple case where

3 2
(2é2)_ {—1 0]

1
Al =
(2x2) det(A)

adj(A)
B 1 ' 0 —2
~det(0—(-2) |1 3
B 0 —2-0.5
~11-05 3-05
10 -1
105 1.5
The inverse of a matrix can be calculated in R using the function solve ().

A <- matrix(2,2,data = ¢(3,-1,2,0))

solve (R)

[,1] [,2]
(1,] 0.0 -1.0
(2,] 0.5 1.5

Eigenanalysis:

For an n x n square matrix A, with eigenvector, v, and eigenvalue,)\, we have:

A-v=M\ v, ()

There will be n corresponding eigenvalues (A1, Ao, ..., \,) and eigenvectors (vy, Vs, ..., V,) in
the matrix decomposition, and the length (number of rows) of each eigenvector will also equal
n. Spectral decomposition of a matrix through eigenanalysis is often used for the purpose of
dimension reduction in approaches like principal components analysis.

Eigenvector generally refers to a right eigenvector. That is, the eigenvector column vector v
is placed to the right of A in the multiplication, A - v, as defined in Eq.2. The left eigenvector
would result from u - A, where v is a 1 X n row vector.

For a square matrix A,
© Yim N =tr(A)
¢ TI, A = det(A)

* The left and right eigenvectors will only be equal for a symmetric matrix.

Example: As a numerical example, let

Rearranging Eq. 2 we have:

det(A—X-I,)=0

1 -2 10
LQ 11_A[01]:0
’1—A -2
-2 1-)
(1-XN1=X)—4=0
(V=2 +1)—4=0

To solve for \ we have:
-0

We have the quadratic equation: A\ — 2\ — 3 =0.

Solving this equation for A (using the quadratic formula), we have the solutions \; = 3,
A2 = —1. These are first two (and in this case, only) eigenvalues.

10

Inserting \; into Eq.2 we obtain the first eigenvector

A"Ul:>\1"01

1 2
- 1H] [
1I1+ 2y1 3-a
2x1+1y1 3y1

We have two equations:

r1 — 2y = 311
—2x1 — Y1 = 3%
Rearranging, we have:
—2x1 —2y; =0
—2x1 — 2y =0
Both equations indicate that x1 = —y;. Arbitrarily letting x;1 = —1, we have y; = 1. The

resulting unstandardized first eigenvector is . Eigenanalysis algorithms generally rescale

1
eigenvectors so that their sum of squares = 1 (so they have unit length). The scaling coefficient for
the ith eigenvector is found using:

1
E:ZJU?

1
ki = ————= = 0.7071
VAT
To get our rescaled eigenvector, we multiply v, by the scalar, &,. Thus our first scaled eigen-
—0.7071
0.7071

ki =

For our example,

} . To get the second eigenvector, we repeat this process using the second

—0.7071] ,

vector, e; is: [

eigenvalue. We find that e; = {_0 2071 |

As with other matrix operations, obtaining eigenvalues and eigenvectors for matrices larger
than 3 x 3 is exceedingly difficult to do “by hand”.

Eigenvalues and eigenvectors of a matrix can be obtained in R using the function eigen ().
Here are the right-hand eigenvectors

A <- matrix(2,2,data = ¢(1,-2,-2,1))
eigen (A)

eigen () decomposition

Svalues
[1] 3 -1

11

Svectors

[,1] [,2]
[1,] -0.7071068 -0.7071068
[2,] 0.7071068 -0.7071068

Here are the left-hand eigenvectors

LH.eigen <- function (2){
eigen (t (4))

}

LH.eigen (A)

eigen () decomposition
Svalues
[1] 3 -1

Svectors

[,1] [,2]
[1,] -0.7071068 -0.7071068
[2,] 0.7071068 -0.7071068

Because (in this case) A is symmetric, the left and right-hand eigenvectors are the same.

1.3 Graph theory terminology
The graph theory definitions and descriptions given here generally follow Aho et al. (2023).

Graph:

An ostensibly graphical method of representing systems of potentially connected nodes (also
called vertices) (Fig 1).

Figure 1: A simple graph with two connected nodes.

Undirected versus Directed Graph:

With an undirected graph we can assume that communication can occur bidirectionally along
connecting lines (generally called edges) between nodes. Conversely, with a directed graph (or

12

digraph), connections between node (generally called arcs) are assumed to be unidirectional (Fig
2).

A digraph can formally defined as an ordered pair, D = (N, A) where N is a set of nodes and
A is a set of arcs that link the nodes. If z is an arc from node « to node v, we denote this as z = ub.

Undirected Directed

Figure 2: An undirected graph versus a directed graph.

Walk and Path:

If W}, is a walk of length &, from node nq to node ny, then we have a finite sequence W), = (N, A)
of the form:

N ={ng,nq,...,ng}

A ={ng,ni,ny,nb, ..., Ng_1, Nk}
where n; and n;,, are adjacent.
A path is a walk in which no nodes appear more than once, except in the case of a cycle (see
below). In this case, nj can equal to ny.

Cyclic versus Acyclic:

A graph cycle occurs when a path among nodes starts and ends at the same node. An acyclic graph
will have no cycles (Fig 3). The term DAG is often used to indicate a directed acyclic graph.

13

Acyclic

Figure 3: A cyclic graph versus an acyclic graph.

Strongly Connected, Weakly Connected, and Disconnected:

A digraph will be strongly connected if every node is reachable from every other node, weakly
connected if every node is reachable after replacing all oriented arcs with bidirectional links be-
tween adjacent nodes, and disconnected if at least two nodes cannot be connected, even after
applying bidirectional links (Fig 4).

Local versus Global Graph Perspectives:

Graph-theoretic approaches for describing graphs can be separated into local measures that de-
scribe the characteristics of individual nodes or arcs, and global measures that summarize the
characteristics of an entire graph.

Degree:

The local importance of nodes to the functioning of a network can be assessed with a large number
of approaches. The simplest of these is the nodal degree. That is, the number of arcs connected
to a node. In a digraph we can distinguish the indegree and outdegree of a node as the number
of arcs with that node as head and the number of arcs with that node as tail. Thus, the degree of
a node will be the sum of its indegree and outdegree. As an example, in left-hand graph in Fig 4,
node b has degree 4, because indegree + outdegree = 2 + 2 = 4. In the center graph, however, node
b has degree 2, because indegree + outdegree =1 + 1 = 2.

14

Strongly connected Weakly connected Disconnected

A path exists between Each node is reachable
each pair of nodes after replacing all oriented
arcs with bidirectional arcs

Figure 4: Strongly connected, weakly connected, and disconnected graphs.

Adjacency Matrix:

Graphs can be represented with an n x n adjacency matrix, A, whose entries, A;; indicate that an
arc exists from node ¢ to j with the designation: A;; = 1, or that there is no arc from ¢ to j, with
the designation: A;; = 0.

Consider the central (weakly connected) graph in Fig 4. Its adjacency matrix is:

(3x3)

o O = o
O = O o
o o o

a
0
A =10
0

In the matrix above, the numbers characterize whether arcs connect nodes or not. Rows indicate
the starting location (tail) of an arc, and columns indicate the ending location (head) of an arc. The

entry 1 at cell A, indicates the presence of the arc ab. Note, however, because the adjacency
matrix represents a weakly connected DAG, there is no connecting arc from b to a. That is, while

15

<_
% exists, ab does not exist.
Graphs, and their adjacency matrices can be obtained using functions from the R package
igraph. Here we codify the central graph in Fig 4 and obtain its adjacency matrix.

library (igraph)
G <- graph_from literal(a ——+ b ——+ c

)
A <- as_adjacency matrix (G, sparse = F)
A

o
O O oW
o o o
o~ OQ

The adjacency matrix can be used to describe many useful network characteristics. For exam-
ple, the 4, j entry in A* will give the number of paths in the graph from node i to node j, of length
k.

A

o\
*

o\
>

o
O O O W
o o oo
o O~ N

There is one path of length 2 in the central graph in Fig 4. It goes from node a to node c.

Stream DAGs:
From Aho et al. (2023)

“Streams networks can be represented using graphs, with streams segments as arcs
bounded by nodes occurring at hydrologically meaningful locations such as sensor
sites, network confluences or splits, sources, sinks. Because they are strongly driven by
hydrological potentials resulting from fixed elevational gradients, graphs that are most
appropriate for describing passive stream network characteristics such as transport and
discharge, will be both directed (with an orientation from sources to sink) and acyclic.”

Graph Weights:
From Aho et al. (2023)

“Nuance and realism can be enhanced in graphs by adding information to nodes
and/or arcs in the form of weights. Weighting information particularly relevant to non-
perennial stream DAGs includes flow rates, instream lengths, probabilities of aquatic

16

organism dispersal, water quality components including nutrients or sediment, up-
stream drainage area, and/or probabilities of surface and subsurface water presence.
Weights can be assessed alongside the strictly topological relationships of nodes and
arcs when describing DAGs.”

Weights can be added to igraph graph objects in several ways. First one can add a weight
attribute to arcs using the function igraph: :E () (for edge). For illustration, consider the central
(weakly connected) graph in Fig 4, which has two arcs.

Gl <- G
E(Gl) Sweight <- ¢ (0.1, 0.2)

The weights should be assigned in the order that they are listed in the_> E () output. Thus, the
first weight, 0.1, will go with ab and the second weight, 0.2, will go with bc.

E(G1)

+ 2/2 edges from 7bfaebd (vertex names) :
[1] a—>b b->c

Second, one can use the function set _edge_attr ().

weights <- c¢(0.1, 0.2)
G2 <- set_edge_attr (G, "weight", value = as.numeric (weights))
attr <- "weight"

Third, many igraph functions have an edge weight argument that allows user imputation of
weights.

We see that the inclusion of weights has altered the adjacency matrix. Specifically, weights are
now listed at connecting arc locations (instead of ones).

as_adjacency _matrix (G2, attr = "weight", sparse = F)

o
O O o v
o O O
oo
o O O
o O A

1.4 Infinite Series
Geometric series:

The following is a geometric series:

[e.9]
ar" ' =a+ar+ar®+---

n=1

17

If |r| < 1, then the infinite series converges to:

a
E ar™ ! =
1—r

n=1

If || > 1, then the series is divergent.

2 Alpha centrality

2.1 Motivation and Derivation

In a graph theoretic representation (see Section 1.3), degree centrality is simply the degree of a
node. Eigenvector centrality refers to the corresponding entry of a node in the principal eigen-
vector of the graph adjacency matrix. This method extends degree centrality by accounting for a
node’s connection to nodes that are themselves important to the network (Newman, 2018). Eigen-
vector centrality, however poses a number of problems for stream DAGs (Aho ef al., 2023).

1. First, the adjacency matrix of a DAG will be asymmetric, and will thus possess distinct left-
and right-hand eigenvectors.

2. Second, “source nodes”, which must have indegree zero, will drive all downstream nodes to
also have an eigenvector centrality of zero (Newman, 2018).

Alpha centrality and Katz centrality address several of these issues. Alpha centrality can be
defined as the infinite series:

x = i (ak(AT)’“) 1= i(aAT)k 1 3)

k=0

where x is a vector of resulting alpha-centralities for each graph node, AT is the transposed
n X n graph adjacency matrix, 1 is a column vector of ones with n entries, and « is a user-defined
scalar.

Expanding Eq 3 we have:

r=> (AT 1=T+aA” + (aAT) +...) 1)

00
k=0

where I is the n X n identity matrix. If this sum converges, then, under the geometric series
(Section 1.4), we can use the matrix notation’:

z=(I-aAT)" 1 5

2Newman (2018) and other sources (including Aho et al. (2023), who probably based their definition on Newman
(2018)), leave out the transpose of A. This transpose (for the form of A and 1 used here) is required, however, to
calculate alpha-centrality correctly.

18

Alpha-centrality provides a “free centrality” (often termed /) to all nodes, regardless of their
topology. For convenience, [is generally taken to be 1, resulting in the form of alpha-centrality
shown in Eq. 5. The a parameter specifies the balance between eigenvector centrality and the
“free centrality”. As « increases, the “free centrality” is de-emphasized compared to eigenvector
centrality.

22 «

Calculation of alpha-centrality requires specification of the « scalar in Eq. 5. Katz (1953) recom-
mended that o be in (0,1). This would allow one to essentially de-emphasize longer paths in the
network when computing the centrality of nodes (see below). The « term often defaults to 1 in
a-centrality computational algorithms, including those in igraph and streamDAG, which wraps the
function igraph: :alpha_centrality.

As o — 0, «AT drops from Eq. 5, and all nodes will have an alpha-centrality of one, be-
cause I~' = I. When « equals the reciprocal of the of the largest eigenvalue of A, non-finite
alpha-centrality outcomes will occur (Newman, 2018). As general guidance, one can set « to be
slightly less than \,,! to obtain outcomes that are numerically similar to those from conventional

eigenvector centrality. Unfortunately, this guidance is not useful for DAGs for the very reason that
alpha-centrality was developed in the first place: a useful eigendecomposition will not exist for A.

Because alpha-centrality equals degree centrality in the limit & — 0, and equals eigenvector
centrality in the limit « —)l . these measures can both be viewed as special cases of alpha-
centrality (Newman, 2018).

2.3 Mechanics of Alpha-centrality

The mechanics of alpha-centrality become evident upon deconstructing Eq. 5.

* If the underlying graph is unweighted (Section 1.3), the elements of its adjacency matrix A
will be ones if they represent a connecting arc and zero otherwise.

* The operation AT results in values of « being set for connecting arcs, if we let columns
represent the start of the arc and rows represent the end of the arc. The opposite of the
conventional interpretation.

* The difference I — o AT results in an n x n matrix with ones on the diagonal (if there are
no self-looping nodes in the graph) and —« at connecting arcs. For a stream DAG, these
negative values will now generally occur in the lower triangle.

o [et:

B=1-aAT

19

The inverse B~* will also be an n x n matrix. The rows of B~ represent paths associated
with a particular node, along with an additional 1 (representing “free centrality””) on the
diagonal. The appearance of ones at existing paths follows from the form of Alpha-centrality
given in Eq 3. Specifically, because it tracks the infinite sum of matrix powers, B!, counts
the number of walks of any length starting from node represented by jth column of B!,
and ending at the node represented by the :th row, adjusted by the corresponding power of
the decay parameter, «.

* The complete operation B! - 1 results in a n x 1 column vector comprised of the row sums

of B~

2.4 Introductory Example

Assume that we wish to calculate alpha-centrality for the DAG in Fig 5

O

Figure 5: Simple unbranched DAG.

e Weleta = 1.

alpha <- 1

* Here we codify the graph, and view its adjacency matrix.

20

G <- graph_from literal (4 ——+ 3 ——+ 2 ——+ 1)
A <- as_adjacency matrix (G, sparse = F)

A

4 3 21
4 0100
30010
200 01
1 0000

* Here is a(= 1) times the transpose of the adjacency matrix.

alpha = t(A)

RN W s
O O B O B
O P O O W
R O O O N
O O O O

e Andhereis I — o AT

I <- matrix(0,4,4); diag(I) <- 1
I - (alpha * t(A))
4 3 21
4 1 0 00
3 -1 1 00
2 0 -1 10
1 0 0 -11

e Let B=1—aAT, then B~" will also be an n x n matrix, whose rows now represent paths
associated with a particular node (along with an additional one on the diagonal, representing
the “’free centrality” assigned to each node).

B <- I - (alpha = t(A))
solve (B)

=N W
S ST
H R PO W
= 2 O O N
O O O K

21

e« B! . 1resultsinan x 1 column vector comprised of the row sums of B~'. These are the
alpha centralities for each node.

one <- matrix (4,1, data = rep(l,4))
solve (B) %*% one

[,1

PN W
S W N P

2.5 The Effect of o

Assume that we wish to obtain alpha-centralities for the simple DAG in Fig 5, but wish to use
a = 0.5.

* We have:
A <- as_adjacency matrix (G, sparse = F)

alpha <- 0.5
alpha = t(A)

4 3 21
4 0.0 0.0 0.0 O
3 0.50.00.00
2 0.0 0.5 0.0 0
1 0.0 0.0 0.50

* Subtracting this product from I results in:

I <- matrix(0,4,4); diag(I) <- 1
B <—- I - alpha x t(Aa)
B
4 3 2 1
4 1.0 0.0 0.00
3 -0.5 1.0 0.0 0
2 0.0 -0.5 1.0 0
1 0.0 0.0 -0.51

¢ And the inverse of B is:

22

solve (B)

4
.000
.500
.250
.125

RN W S
O O O =

S O = O

3

.00
.00
.50
.25

O = O O
g O O o N

R o O O -

* As before, the row sums of B~! give the alpha-centralities.

solve (B)

[,1]
.000
.500
.750
.875

=N W
S S

$x% rep(l,4)

It is clear that for a DAG with order n, and no branching (no joins or splits), we will have the

following matrix framework for B ™"

«

e 2 0

o .

=W N

n—1

1.0

(07

Q

w N

n—2

«

n—3

«

n—4

o

n—>

O OO OO

1.0

(6)

Thus, paths given in the off-diagonal elements of B~' are weighted by « raised to the power

of the path length.

» For a € (0, 1], longer paths will have less influence when calculating alpha-centrality for
a node. A path with maximum length (n — 1) will have minimum weight, o', whereas
a path with minimum length, 1, will have maximum weight .. For this reason o has been

called a decay parameter.

» Specifying @ = 1 will cause « to drop out of Eq. 5, and all paths will have the same «
(non-)weighting, regardless of length.

2.6 The Effect of Branching

Lets now consider the effect of network branching on alpha-centrality using a graph with a join
(Fig 6A), and a graph with a split and join (an island) (Fig 6B).

23

%00
@ @

Figure 6: Simple branched DAGs.

¢ We have:

graph_A <- graph_from literal(7 ——+ 6 ——+ 5 ——+ 3,
4 ——+ 3, 3-——+ 2, 2——+ 1)
graph_B <- graph_from literal(7 --+ 6 ——+ 5, 6 ——+ 4,
5 -—+ 3, 4 ——+ 3, 3-——+ 2, 2-—-+ 1)

* The adjacency matrices are:

A_A <- as_adjacency_matrix(graph_A, sparse = F)

A_A

765 3421
701 00O0O00O0
6 0010000
50001000
30000010
40001000
2 0000O0O0T1
1 0000O0O0CO
A_B <- as_adjacency_matrix(graph_B, sparse = F)
A_B

76 5 4 3 21
701 00O0O00O0
60011000
50000100
4 00001O00O0
30000010
2 0000O0O01
1 0000O0O0CO

24

Note that joins show up as multiple ones in adjacency matrix columns (see column for node
3 in A_A) and splits appear as multiple ones in rows (see row for node 6 in A_B).

Letting o = 1, we find I — o AT

alpha <=1
I <- matrix(0,7,7); diag(I) <- 1
I - (alpha * t(A_A))
7 6 5 3 4 21
7 1 0 O O 0 00
6 -1 1 0 0 0 00O
5 0-1 1 0 0 00
3 0 0-1 1 -1 00
4 0 O 0O O 1 00
2 0 0 O0-1 0 10
1 0 0 0 0 0 -11
I - (alpha » t(A_B))
7 6 5 4 3 21
7 1 0 0O O 0 00
6 -1 1 0 0 0 020
5 0-1 1 0 0 00
4 0-1 0 1 0O 00O
3 0 0-1-1 1 00
2 0 0 O O0-1 10
1 0 0 0O 0 0 -11

And B~ ! where B =1 — o AT.

B_A <— I - alpha » t(A_A)
solve (B_A)

76 53421
71000000
61100000
51110000
31111100
40000100
21111110
11111111

B_ B <- I - alpha x t(A_B)
solve (B_BR)

25

RN W 0oy J
N NN P PP
N NN EHE P PO o
R P P OB OO Ul
R P P PO O O B
R PP OO OO Ww
R PO O OO OoODN
R O O O O O O

Note that there are no paths to node 4 from nodes 7, 6, 5, and 3 in graph A, and that there
are two paths to nodes 1, 2, and 3 from nodes 7, 6, 5 in graph B.

* As before, row sums of B~! provide alpha-centralities.

solve (B_A) %*% rep(l, 7)

[,1

RN S W ooy J
~ oo 0w N B =

solve (B_B) %*% rep(l, 7)

[,1

RN W s 0oy J
OW 0O J W W N PP

2.7 The Combined Effect of o and Branching

We now consider the interplay of « and branching:

* In particular, we let « = 0.5 and calculate alpha-centralities for the graphs in Fig 6

26

alpha <- 0.5

I <- matrix(0,7,7);

BA <- I -
BB <- I -

solve (B_A)

7
.00000
.50000
.25000
.12500
.00000
.06250
.03125

RN S W ooy J
O O O O O o

solve (B_R)

7
.0000
.5000
.2500
.2500
.2500
.1250
.0625

RN Ww s 0oy J
O O O O O o

* A resemblance to the basic unbranched framework for B~' shown in Eq. 6 remains, al-
though it is now more difficult to discern. For instance, in graph A the path from node 7
to node 2 has length 4 (Fig 6A), so it is given weight o* = 0.5* = 0.0625 in the B! ma-
trix for graph A (intersection of row 6 and column 1). There is no path between nodes 7
and 4 in graph A, so this path is given weight 0 in the B~ matrix for graph A (intersec-
tion of row 5 and column 1). In graph B there are two ways to get from node 7 to node
2, and both of these have length 4 (Fig 6B). Thus, the resulting weight for this connection
is 2 - 0.5 = 0.125 in the B~ matrix for graph B (intersection of row 6 and column 1).
Likewise, there are two paths from node 7 to node 1 and both of these have length 5, so we
have the weight 2 - 0.5° = 0.0625 for this path (intersection of row 7 and column 1).

2.8 Interpreting Alpha-centrality in Stream DAGs

O O O O O+ O

O O O O O+ O

.000
.000
.500
.500
.500
.250
.125

(
(alpha « t(A_A))
(alpha ~ t(A_B

6
.0000
.0000
.5000
.2500
.0000
.1250
.0625

6

O O O O O O

2.8.1 Unweighted DAGs

As additional unweighted graph examples, consider the stream DAGs in Fig 7. The relationship
between the alpha-centrality (for three different values of «/), the number of paths, and upstream

.000
.000
.000
.000
.500
.250
.125

5
.000
.000
.000
.500
.000
.250
.125

O O O O+ O O

5

O O O OO O

diag (I)
)
)

)

3
.00
.00
.00
.00
.00
.50
.25

O O O O O O

4

.000
.000
.000
.000
.500
.250
.125

O O O O o O

<

O O O O O O

.00
.00
.00
.00
.00
.50
.25

= 1

4
.000
.000
.000
.500
.000
.250
.125

3

27

O P O O O O O

U O O O O O o N

O O O O o O
U O O O O O O N

R O O OO o O O

R O O O o o O

network order for the outlet node (i.e., node 1) for each of the DAGs shown in Fig 7, is given in
Table 1.

Note that in the special (but frequently observed) case that a graph is unweighted, and o« =
1, alpha centrality will be the number of paths to a node, plus 1 (Table 1). Thus a reasonable
modification to Eq. 5 would be:

T, = (I—aAT)_1~1—1, or
w1={(I—ozAT)_1—I}'1

As shown in Section 2.6 and 2.7, network splits followed by joins (resulting from islands)
increase the number of paths to the outlet. For a stream DAG in the absence of conjoined splits
and joins, the alpha-centrality of a stream DAG node will also be the order (the number of nodes)
in the intact network upstream, plus one.

Also apparent in Table 1 is the effect of varying the o parameter in Eq. 5. Note that as o goes
toward zero, the alpha-centrality of the outlet node decreases (it approaches the free centrality of
1 given to all nodes) because, even though the outlets will have more paths than any other node,
longer paths associated with the outlet are down-weighted.

(7

Table 1: Summary of outlet nodes (node 1) for DAGs in Fig 7. Alpha centralities calculated using
a=1,a=0.75 and a = 0.5.

Graph Alpha-centrality Paths Order
a=05 a=07 a=1.0
A 1.50 1.75 2.00 1.00 1.00
B 1.75 2.31 3.00 2.00 2.00
C 2.00 3.16 5.00 4.00 4.00
D 2.44 4.46 8.00 7.00 7.00
E 2.50 4.77 9.00 8.00 8.00
F 3.00 5.52 10.00 9.00 9.00
G 2.25 4.21 8.00 7.00 7.00
H 2.31 4.69 10.00 9.00 8.00
I 2.34 5.04 12.00 11.00 9.00

2.8.2 Weighted DAGs

In addition to modifying o which (if & € (0, 1]) will diminish the importance of a path as a func-
tion of its length, numerical information can be added to stream DAG arcs, reflecting specific arc
characteristics (e.g., flow rates, instream lengths). The result is a weighted graph.

From the perspective of alpha-centrality, weighting modifies the adjacency matrix A in Eq. 5,
so that weights occur at cells representing connecting arcs, instead of ones.

As a relatively complex weighted example, consider the intermittent stream DAG in Fig 8,

with 19 nodes and 18 arcs. Here, arcs are weighted by the probability of surface water at that arc
(numbers above arcs).

28

Figure 7: Example stream DAGs. Note that the outlet node has the label 1 in each DAG.

* As before, we define define the graph using igraph scripts.

G <- graph_from literal(a - -+ ¢, ¢ ——+ e, e ——+ £, £ ——+ p,
p -——-t+49, 9 —+ 1,
lo == €, e ==+ g,
g -—+4i, i —+ j, 1 ——+ k, k ——+ m,
j ——+m m -——+ n, n-——+ o0, 0o ——+ p,
h-—+1, 1 ——+ n)
weight .matrix <- data.frame (matrix(ncol = 2, nrow = 18, data = c(
"a->c", 0.2, "c—>e", 0.2, "e->f", 0.2, "f->p", 0.5, "o->gq", 0.7,
"g->r", 0.9, "b->d", 0.1, "d->e", 0.3, "g->i", 0.2, "i->j", 0.1,
"i->k", 0.6, "j->m", 0.5, "k->m", 0.5, "m->n", 0.4, "n->o0", 0.3,
"o->p", 0.2, "h->1", 0.1, "1->n", 0.3), byrow = T))

names (weight .matrix) <- c("Arc", "Weight")
weight .matrix$"Weight" <- as.numeric (weight.matrix$"Weight")

29

\\il

06 ".“**h

0.1

0.9

/"
03

04
—T

o

Figure 8: Example stream DAG. Numbers above arcs are probabilities of segment presence.

0.2

0.5

03

e Wewilllet « = 1.

alpha <=1

* Here is the adjacency matrix.

= F)

jacency matrix (G, sparse

A <- as_ad

acefpgrbdgijkmnohl
a 010000000O0O0O0OO0OO0OO0COSO 0O
c 001000O0O0OO0O0OOOOOOGO0O0
e 00010000O0O0COCOO0OOOOGOO
£ft00001000O0O0O0O0O0O0O0O0O0O
p000O0CO01O0O0O0OO0OOO0OO0O0O0O0O0O
qg000000100O0O0CO0OO0OO0OO0COGO0OO
r0000O0O0O0O0OO0OOOOOOOOODO
b 0OO0OO0OO0OOOOO10O0OO0OO0O0OO0O0O0O
d00100000O0O0O0COO0OO0OOOGO0O
g000000000O01IO0O0OO0OO0COO0®O
i00000O0O0O0CO0CO0O0O1I1O0O0O0O00QO0

3000000O0O0O0CO0COCOO0O1ILIO0O0GO0O
k0O0OOOOOOOOOOOO1ILIOOOO

30

mOOO0OO0OO0OO0OO0OO0OO0OO0OOOOOT1LIO0O0OQO0
n0OO0O0O0OO0OOOOOOOOO0OO0O0O1IO0O
o000010O0O0O0O0O0COOOOOGO OO
h00O0OO0OOOOOOOOOOO0OO0OO0OO0OT1
1000000O0O0O0O0COOOOTILIO®O0OQO0

G
weights <- weight.matrix[,2]

* To set graph weights I use:
W <-

as.numeric (weights))

value

"weight",

_edge_attr (W,
"weight"

set_ed

W <-

attr <-

* Note that weighting graph arcs has radically changed the form of the adjacency matrix, now

termed D. Specifically, weights are now listed at connecting arc locations, instead of ones.

= FALSE)

sparse

= attr,

jacency matrix (W, attr

D <- as_ad

a0¢0.20.00.00.00.00.000.000.00.00.00.00.00.000.0
c0®O0.00.20.00.00.00.000.0600.00.00.00.00.00.00 0.0
e 00.00.00.20.00.00.000.00¢0.00.00.00.00.00.00 0.0
£00.00.00.00.50.00.000.000.00.00.00.00.00.00 0.0
p0O0.00.00.00.00.70.000.06060.00.00.00.0¢0.00.00 0.0
qg0O.00.00.00.0¢0.00.900.00¢0.0¢0.00.00.00.00.0¢0 0.0
r00.00.00.00.00.00.000.006@0.00.00.00.00.00.000.0
b 0O0.00.00.00.00.00.0O0¢O0.16000.00.00.00.0¢0.00.000.0
400.00.30.00.00.00.000.00¢0.00.00.00.00.00.0¢0 0.0
g0O0.00.00.00.0¢0.00.000.00@0.20.00.00.00.00.00 0.0
i00.00.00.00.00.00.000.00@0.00.10.60.00.00.000.0
3 00.00.00.00.00.00.0000.000.00.00.00.50.00.00 0.0
k0O0.00.00.00.00.00.0060.0¢0©0.00.00.00.50.00.00 0.0
mOO0.00.00.00.00.00.00¢0.00¢0.0¢0.00.00.00.40.00 0.0
nOO0.00.00.00.00.00.0606©0.00U0.00.00.0¢0.00.00.300.0
o060.0 0.00.00.20.00.00@0.000.0¢0.00.00.00.00.00 0.0
ho0o0.060.00.00.00.00.0600.006@0.00.00.0¢0.00.00.0¢0¢0.1
1060.00.00.00.00.00.000.000.00.00.00.00.30.000.0

=1 —aDT

e Here I calculate B

<_

diag(I)

nrow (D), ncol = ncol(D));

nrow

I <- matrix (0,

— alpha = t (D)

B <~ 1

e And here is B!

31

solve (B)

.00000
.20000
.04000
.00800
.00400
.00280
.00252
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

5 0B 3 W QOO RQT HOOO
[eNeoNeoNeNeNeNelNoNoNolNolNeolNe ool oo
[eNeoNeoNeNeNeoNeolNoNoNoNolNolNoNeoNoNol o)

.00000
.00000
.00000
.00000
.01200
.00840
.00756
.00000
.00000
.00000
.00000
.00000
.00000
.50000
.20000
.06000
.00000
.00000

=5 0 B33 ~u FWQ QOO0 KR8.QT HOQ
[eNeNeoNe NN e Ne NeoNe Ne Ne Ne Ne No No Ne)
[eNeNeoNeNeN e Ne NoNeoNeNeNe e NoNe o)

As before, the row sums of B~! give the alpha-centralities.

solve (B) %

[,1]
a 1.000000
c 1.200000
e 1.570000

.0000
.0000
.2000
.0400
.0200
.0140
.0126
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.00000
.00000
.00000
.00000
.01200
.00840
.00756
.00000
.00000
.00000
.00000
.00000
.00000
.50000
.20000
.06000
.00000
.00000

O O O O O O OO0 oOooor oo

.000
.000
.000
.200
.100
.070
.063
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O O FH OO OO0 OOoOoOooooo o

O O O O O OO OO0 or oo o

.00000
.00000
.00000
.00000
.02400
.01680
.01512
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.40000
.12000
.00000
.00000

.000
.000
.000
.000
.500
.350
.315
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O OO O OO0 OOoOOoOoOooOoo

P
.00

.00
.00
.00
.00
.70
.63
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O OO0 oOoOokr oo oo

.0000
.0000
.0000
.0000
.0600
.0420
.0378
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.3000
.0000
.0000

*% rep(l,nrow (D))

O O O O OO OO OOOOoORr OoOooOoOo
O O O O OO O OO OO WoLHOoO O o o O\Q

.000
.000
.000
.000
.200
.140
.126
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O OO O OO OO0 OOOoOoo oo

32

O O O O O O OO OO0k OOOoOOoOOoOOoH-h

O O O OO OO0 O0OOOoOoOoooo o

O O O O O OO OO OoOHrHrH OOoOOoOoOOoOoOo

b
.00000
.00000
.03000
.00600
.00300
.00210
.00189
.00000
.10000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

h

.000000
.000000
.000000
.000000
.001800
.001260
.001134
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.030000
.009000
.000000
.100000

O O O O OO OO0 OOOOoOoOOoOOoOo

P O O O O OO0 0OOOOoOOoOoOoOoOo o

d

.0000
.0000
.3000
.0600
.0300
.0210
.0189
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.00000
.00000
.00000
.00000
.01800
.01260
.01134
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.30000
.09000
.00000
.00000

O O O O O O OO H OOOOOOoOoOOoOo

g

.0000000
.0000000
.0000000
.0000000
.0016800
.0011760
.0010584
.0000000
.0000000
.0000000
.2000000
.0200000
.1200000
.0700000
.0280000
.0084000
.0000000
.0000000

O O O O O OO kH OOOOOOoOOoOOoOOoOo

i

.000000
.000000
.000000
.000000
.008400
.005880
.005292
.000000
.000000
.000000
.000000
.100000
.600000
.350000
.140000
.042000
.000000
.000000

.314000
.994880
.396416
.156774
.000000
.100000
.000000
.200000
.120000
. 720000
.420000
.298000
.689400
.000000
.100000

5 0 B35 2 ~uw P-WQ O O K .Q T H
e e S S e T N R e S S O GO NCHER =

It is possible to trace entries in B~ (in the previous R output) to the graphical representation
in Fig 8. For example, the arc at has path length 1, and so the weight (probability of stream
presence) for this arc, 0.2 (Fig 8), is given directly in B! (intersection of row ¢ and column a).
The path act is comprised of two vectors, at and @é, and each of these has weight 0.2 (Fig 8).
Thus, the weight given to the path acé is 0.2 x 0.2 = 0.04 (intersection of row ¢ and column
a). As a more complex example, there are two paths from node ¢ to node n: g,7,7, m,n and
{g,1,k,m,n} (Fig 8). The accumulated weights for these paths are: 0.2 - 0.1 - 0.1 - 0.4 = 0.0008
and 0.2-0.6-0.5-0.4 = 0.024 (Fig 8). Thus, the weight reported in B~ for the connection between
g and n, is 0.0008 + 0.0248 = 0.0248 (intersection of row n and column g).

Clearly, even though the o parameter is being dropped here by letting it equal one, the effect
of path length is still be being expressed in the path weights given in B~!. Specifically, if weights
are in (0, 1] paths of greater length will be increasingly down-weighted in the calculation of alpha-
centrality, and will be further decreased if one specifies o € (0, 1], because the initial weights will
be multiplied by a proportion. Conversely, if weights are greater than one, longer path lengths will
be exponentially up-weighted/emphasized when calculating alpha-centrality!!

References

Aho, K., Kriloff, C., Godsey, S.E., Ramos, R., Wheeler, C., You, Y., Warix, S., Derryberry, D.,
Zipper, S., Hale, R.L. et al. (2023) Non-perennial stream networks as directed acyclic graphs:
The r-package streamdag. Environmental Modelling & Software, 167, 105775.

Bonacich, P. & Lloyd, P. (2001) Eigenvector-like measures of centrality for asymmetric relations.
Social networks, 23, 191-201.

Katz, L. (1953) A new status index derived from sociometric analysis. Psychometrika, 18, 39—43.

Newman, M. (2018) Networks. Oxford university press.

33

	Introduction
	Matrix terminology
	Scalar
	Matrix
	Column vector
	Row vector
	Square matrix
	Major diagonal
	Triangular matrix
	Diagonal matrix
	Identity matrix

	Matrix operations
	Addition and subtraction
	Transpose
	Symmetric matrix
	Multiplication
	Trace
	Determinant
	Adjugate matrix
	Inverse
	Eigenanalysis

	Graph theory terminology
	Graph
	Undirected vs directed graph
	Walk and Path
	Cyclic vs acyclic graph
	Strongly connected, weakly connected, and disconnected graph
	Local vs Global graph Perspectives
	Degree
	Adjacency matrix
	Stream DAG
	Weighted graph

	Infinite Series
	Geometric-series

	Alpha centrality
	Motivation and Derivation
	
	Mechanics of Alpha-centrality
	Introductory Example
	The Effect of
	The Effect of Branching
	The Combined Effect of and Branching
	Interpreting Alpha-centrality in Stream DAGs
	Unweighted DAGs
	Weighted DAGs

