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What is xts?
xts is an R package offering a number of functionalities to work on time-indexed data. xts
extends zoo, another popular package for time-series analysis.

Why should I use xts rather than zoo or another time-series
package?
The main benefit of xts is its seamless compatibility with other packages using different time-
series classes (timeSeries, zoo, ...). In addition, xts allows the user to add custom attributes to
any object. See the main xts vignette for more information.

How do I install xts?
xts depends on zoo and suggests some other packages. You should be able to install xts and
all the other required components by simply calling install.packages('pkg') from the R
prompt.

I have multiple .csv time-series files that I need to load in a
single xts object. What is the most efficient way to import
the files?
If the files have the same format, load them with read.zoo and then call rbind to join the
series together; finally, call as.xts on the result. Using a combination of lapply and do.call
can accomplish this with very little code:

> filenames <- c("a.csv", "b.csv", "c.csv")
> sample.xts <- as.xts(do.call("rbind", lapply(filenames, read.zoo)))

Why is xts implemented as a matrix rather than a data
frame?
xts uses a matrix rather than data.frame because:

1. xts is a subclass of zoo, and that’s how zoo objects are structured; and

2. matrix objects have much better performance than data.frames.

How can I simplify the syntax when referring to xts object
column names?
with allows you to use the colmn names while avoiding the full square brackets syntax. For
example:

> lm(sample.xts[, "Res"] ~ sample.xts[, "ThisVar"] + sample.xts[, "ThatVar"])
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can be converted to

> with(sample.xts, lm(Res ~ ThisVar + ThatVar))

How can I replace the zeros in an xts object with the last
non-zero value in the series?
Convert the zeros to NA and then use na.locf:

> sample.xts <- xts(c(1:3, 0, 0, 0), as.POSIXct("1970-01-01")+0:5)
> sample.xts[sample.xts==0] <- NA
> cbind(orig=sample.xts, locf=na.locf(sample.xts))

orig locf
1970-01-01 00:00:00 1 1
1970-01-01 00:00:01 2 2
1970-01-01 00:00:02 3 3
1970-01-01 00:00:03 NA 3
1970-01-01 00:00:04 NA 3
1970-01-01 00:00:05 NA 3

How do I create an xts index with millisecond precision?
Milliseconds in xts indexes are stored as decimal values. This example builds an index spaced
by 100 milliseconds, starting at the current system time:

> data(sample_matrix)
> sample.xts <- xts(1:10, seq(as.POSIXct("1970-01-01"), by=0.1, length=10))

I have a millisecond-resolution index, but the milliseconds
aren’t displayed. What went wrong?
Set the digits.secs option to some sub-second precision. Continuing from the previous ex-
ample, if you are interested in milliseconds:

> options(digits.secs=3)
> head(sample.xts)

[,1]
1970-01-01 00:00:00.0 1
1970-01-01 00:00:00.1 2
1970-01-01 00:00:00.2 3
1970-01-01 00:00:00.3 4
1970-01-01 00:00:00.4 5
1970-01-01 00:00:00.5 6
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I set digits.sec=3, but R doesn’t show the values correctly.
Sub-second values are stored with approximately microsecond precision. Setting the precision
to only 3 decimal hides the full index value in microseconds and might be tricky to interpret
depending how the machine rounds the millisecond (3rd) digit. Set the digits.secs option to
a value higher than 3 or convert the date-time to numeric and use print’s digits argument,
or sprintf to display the full value. For example:

> dt <- as.POSIXct("2012-03-20 09:02:50.001")
> print(as.numeric(dt), digits=20)

[1] 1332234170.0009999275

> sprintf("%20.10f", dt)

[1] "1332234170.0009999275"

I am using apply to run a custom function on my xts ob-
ject. Why does the returned matrix have different dimen-
sions than the original one?
When working on rows, apply returns a transposed version of the original matrix. Simply call
t on the returned matrix to restore the original dimensions:

> sample.xts.2 <- xts(t(apply(sample.xts, 1, myfun)), index(sample.xts))

I have an xts object with varying numbers of observations
per day (e.g., one day might contain 10 observations, while
another day contains 20 observations). How can I apply a
function to all observations for each day?
You can use apply.daily, or period.apply more generally:

> sample.xts <- xts(1:50, seq(as.POSIXct("1970-01-01"),
+ as.POSIXct("1970-01-03")-1, length=50))
> apply.daily(sample.xts, colMeans)

[,1]
1970-01-01 23:30:36.244 13
1970-01-02 23:59:59.000 38

> period.apply(sample.xts, endpoints(sample.xts, "days"), colMeans)

[,1]
1970-01-01 23:30:36.244 13
1970-01-02 23:59:59.000 38

> period.apply(sample.xts, endpoints(sample.xts, "hours", 6), colMeans)
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[,1]
1970-01-01 05:52:39.061 4.0
1970-01-01 11:45:18.122 10.5
1970-01-01 17:37:57.183 16.5
1970-01-01 23:30:36.244 22.5
1970-01-02 05:23:15.306 28.5
1970-01-02 11:15:54.367 34.5
1970-01-02 17:08:33.428 40.5
1970-01-02 23:59:59.000 47.0

How can I process daily data for a specific time subset?
First use time-of-day subsetting to extract the time range you want to work on (note the leading
"T" and leading zeros are required for each time in the range: "T06:00"), then use apply.daily
to apply your function to the subset:

> apply.daily(sample.xts['T06:00/T17:00',], colMeans)

How can I analyze my irregular data in regular blocks, adding
observations for each regular block if one doesn’t exist in the
origianl time-series object?
Use align.time to round-up the indexes to the periods you are interested in, then call period.apply
to apply your function. Finally, merge the result with an empty xts object that contains all the
regular index values you want:

> sample.xts <- xts(1:6, as.POSIXct(c("2009-09-22 07:43:30",
+ "2009-10-01 03:50:30", "2009-10-01 08:45:00", "2009-10-01 09:48:15",
+ "2009-11-11 10:30:30", "2009-11-11 11:12:45")))
> # align index into regular (e.g. 3-hour) blocks
> aligned.xts <- align.time(sample.xts, n=60*60*3)
> # apply your function to each block
> count <- period.apply(aligned.xts, endpoints(aligned.xts, "hours", 3), length)
> # create an empty xts object with the desired regular index
> empty.xts <- xts(, seq(start(aligned.xts), end(aligned.xts), by="3 hours"))
> # merge the counts with the empty object
> head(out1 <- merge(empty.xts, count))

count
2009-09-22 09:00:00 1
2009-09-22 12:00:00 NA
2009-09-22 15:00:00 NA
2009-09-22 18:00:00 NA
2009-09-22 21:00:00 NA
2009-09-23 00:00:00 NA

> # or fill with zeros
> head(out2 <- merge(empty.xts, count, fill=0))
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count
2009-09-22 09:00:00 1
2009-09-22 12:00:00 0
2009-09-22 15:00:00 0
2009-09-22 18:00:00 0
2009-09-22 21:00:00 0
2009-09-23 00:00:00 0

Why do I get a zoo object when I call transform on my xts
object?
There’s no xts method for transform, so the zoo method is dispatched. The zoo method
explicitly creates a new zoo object. To convert the transformed object back to an xts object
wrap the transform call in as.xts:

> sample.xts <- as.xts(transform(sample.xts, ABC=1))

You might also have to reset the index timezone:

> tzone(sample.xts) <- Sys.getenv("TZ")

Why can’t I use the & operator in xts objects when querying
dates?
"2011-09-21" is not a logical vector and cannot be coerced to a logical vector. See ?"&" for
details.

xts’ ISO-8601 style subsetting is nice, but there’s nothing we can do to change the behavior
of .Primitive("&"). You can do something like this though:

> sample.xts[sample.xts$Symbol == "AAPL" & index(sample.xts) == as.POSIXct("2011-09-21"),]

or:

> sample.xts[sample.xts$Symbol == "AAPL"]['2011-09-21']

How do I subset an xts object to only include weekdays (ex-
cluding Saturday and Sundays)?
Use .indexwday to only include Mon-Fri days:

> data(sample_matrix)
> sample.xts <- as.xts(sample_matrix)
> wday.xts <- sample.xts[.indexwday(sample.xts) %in% 1:5]
> head(wday.xts)

Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
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2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-08 50.03555 50.10363 49.96971 49.98806
2007-01-09 49.99489 49.99489 49.80454 49.91333

I need to quickly convert a data.frame that contains the
time-stamps in one of the columns. Using as.xts(Data) re-
turns an error. How do I build my xts object?
The as.xts function assumes the date-time index is contained in the rownames of the object
to be converted. If this is not the case, you need to use the xts constructor, which requires
two arguments: a vector or a matrix carrying data and a vector of type Date, POSIXct, chron,
. . . , supplying the time index information. If you are certain the time-stamps are in a specific
column, you can use:

> Data <- data.frame(timestamp=as.Date("1970-01-01"), obs=21)
> sample.xts <- xts(Data[,-1], order.by=Data[,1])

If you aren’t certain, you need to explicitly reference the column name that contains the time-
stamps:

> Data <- data.frame(obs=21, timestamp=as.Date("1970-01-01"))
> sample.xts <- xts(Data[,!grepl("timestamp",colnames(Data))],
+ order.by=Data$timestamp)

I have two time-series with different frequency. I want to
combine the data into a single xts object, but the times are
not exactly aligned. I want to have one row in the result
for each ten minute period, with the time index showing the
beginning of the time period.
align.time creates evenly spaced time-series from a set of indexes, merge ensure two time-
series are combined in a single xts object with all original columns and indexes preserved. The
new object has one entry for each timestamp from both series and missing values are replaced
with NA.

> x1 <- align.time(xts(Data1$obs, Data1$timestamp), n=600)
> x2 <- align.time(xts(Data2$obs, Data2$timestamp), n=600)
> merge(x1, x2)

Why do I get a warning when running the code below?
> data(sample_matrix)
> sample.xts <- as.xts(sample_matrix)
> sample.xts["2007-01"]$Close <- sample.xts["2007-01"]$Close + 1
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> #Warning message:
> #In NextMethod(.Generic) :
> # number of items to replace is not a multiple of replacement length

This code creates two calls to the subset-replacement function xts:::`[<-.xts`. The first call
replaces the value of Close in a temporary copy of the first row of the object on the left-hand-
side of the assignment, which works fine. The second call tries to replace the first element of
the object on the left-hand-side of the assignment with the modified temporary copy of the first
row. This is the problem.

For the command to work, there needs to be a comma in the first subset call on the left-
hand-side:

> sample.xts["2007-01",]$Close <- sample.xts["2007-01"]$Close + 1

This isn’t encouraged, because the code isn’t clear. Simply remember to subset by column
first, then row, if you insist on making two calls to the subset-replacement function. A cleaner
and faster solution is below. It’s only one function call and it avoids the $ function (which is
marginally slower on xts objects).

> sample.xts["2007-01","Close"] <- sample.xts["2007-01","Close"] + 1
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