/*===---- xmmintrin.h - SSE intrinsics -------------------------------------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __XMMINTRIN_H #define __XMMINTRIN_H #include typedef int __v4si __attribute__((__vector_size__(16))); typedef float __v4sf __attribute__((__vector_size__(16))); typedef float __m128 __attribute__((__vector_size__(16), __aligned__(16))); typedef float __m128_u __attribute__((__vector_size__(16), __aligned__(1))); /* Unsigned types */ typedef unsigned int __v4su __attribute__((__vector_size__(16))); /* This header should only be included in a hosted environment as it depends on * a standard library to provide allocation routines. */ #if __STDC_HOSTED__ #include #endif /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse"), __min_vector_width__(128))) #define __DEFAULT_FN_ATTRS_MMX __attribute__((__always_inline__, __nodebug__, __target__("mmx,sse"), __min_vector_width__(64))) /// Adds the 32-bit float values in the low-order bits of the operands. /// /// \headerfile /// /// This intrinsic corresponds to the VADDSS / ADDSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// The lower 32 bits of this operand are used in the calculation. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// The lower 32 bits of this operand are used in the calculation. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the sum /// of the lower 32 bits of both operands. The upper 96 bits are copied from /// the upper 96 bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_add_ss(__m128 __a, __m128 __b) { __a[0] += __b[0]; return __a; } /// Adds two 128-bit vectors of [4 x float], and returns the results of /// the addition. /// /// \headerfile /// /// This intrinsic corresponds to the VADDPS / ADDPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// \returns A 128-bit vector of [4 x float] containing the sums of both /// operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_add_ps(__m128 __a, __m128 __b) { return (__m128)((__v4sf)__a + (__v4sf)__b); } /// Subtracts the 32-bit float value in the low-order bits of the second /// operand from the corresponding value in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VSUBSS / SUBSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing the minuend. The lower 32 bits /// of this operand are used in the calculation. /// \param __b /// A 128-bit vector of [4 x float] containing the subtrahend. The lower 32 /// bits of this operand are used in the calculation. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// difference of the lower 32 bits of both operands. The upper 96 bits are /// copied from the upper 96 bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sub_ss(__m128 __a, __m128 __b) { __a[0] -= __b[0]; return __a; } /// Subtracts each of the values of the second operand from the first /// operand, both of which are 128-bit vectors of [4 x float] and returns /// the results of the subtraction. /// /// \headerfile /// /// This intrinsic corresponds to the VSUBPS / SUBPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing the minuend. /// \param __b /// A 128-bit vector of [4 x float] containing the subtrahend. /// \returns A 128-bit vector of [4 x float] containing the differences between /// both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sub_ps(__m128 __a, __m128 __b) { return (__m128)((__v4sf)__a - (__v4sf)__b); } /// Multiplies two 32-bit float values in the low-order bits of the /// operands. /// /// \headerfile /// /// This intrinsic corresponds to the VMULSS / MULSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// The lower 32 bits of this operand are used in the calculation. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// The lower 32 bits of this operand are used in the calculation. /// \returns A 128-bit vector of [4 x float] containing the product of the lower /// 32 bits of both operands. The upper 96 bits are copied from the upper 96 /// bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_mul_ss(__m128 __a, __m128 __b) { __a[0] *= __b[0]; return __a; } /// Multiplies two 128-bit vectors of [4 x float] and returns the /// results of the multiplication. /// /// \headerfile /// /// This intrinsic corresponds to the VMULPS / MULPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// \returns A 128-bit vector of [4 x float] containing the products of both /// operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_mul_ps(__m128 __a, __m128 __b) { return (__m128)((__v4sf)__a * (__v4sf)__b); } /// Divides the value in the low-order 32 bits of the first operand by /// the corresponding value in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VDIVSS / DIVSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing the dividend. The lower 32 /// bits of this operand are used in the calculation. /// \param __b /// A 128-bit vector of [4 x float] containing the divisor. The lower 32 bits /// of this operand are used in the calculation. /// \returns A 128-bit vector of [4 x float] containing the quotients of the /// lower 32 bits of both operands. The upper 96 bits are copied from the /// upper 96 bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_div_ss(__m128 __a, __m128 __b) { __a[0] /= __b[0]; return __a; } /// Divides two 128-bit vectors of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VDIVPS / DIVPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing the dividend. /// \param __b /// A 128-bit vector of [4 x float] containing the divisor. /// \returns A 128-bit vector of [4 x float] containing the quotients of both /// operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_div_ps(__m128 __a, __m128 __b) { return (__m128)((__v4sf)__a / (__v4sf)__b); } /// Calculates the square root of the value stored in the low-order bits /// of a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VSQRTSS / SQRTSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the calculation. /// \returns A 128-bit vector of [4 x float] containing the square root of the /// value in the low-order bits of the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sqrt_ss(__m128 __a) { return (__m128)__builtin_ia32_sqrtss((__v4sf)__a); } /// Calculates the square roots of the values stored in a 128-bit vector /// of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VSQRTPS / SQRTPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the square roots of the /// values in the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sqrt_ps(__m128 __a) { return __builtin_ia32_sqrtps((__v4sf)__a); } /// Calculates the approximate reciprocal of the value stored in the /// low-order bits of a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRCPSS / RCPSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the calculation. /// \returns A 128-bit vector of [4 x float] containing the approximate /// reciprocal of the value in the low-order bits of the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rcp_ss(__m128 __a) { return (__m128)__builtin_ia32_rcpss((__v4sf)__a); } /// Calculates the approximate reciprocals of the values stored in a /// 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRCPPS / RCPPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the approximate /// reciprocals of the values in the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rcp_ps(__m128 __a) { return (__m128)__builtin_ia32_rcpps((__v4sf)__a); } /// Calculates the approximate reciprocal of the square root of the value /// stored in the low-order bits of a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRSQRTSS / RSQRTSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the calculation. /// \returns A 128-bit vector of [4 x float] containing the approximate /// reciprocal of the square root of the value in the low-order bits of the /// operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rsqrt_ss(__m128 __a) { return __builtin_ia32_rsqrtss((__v4sf)__a); } /// Calculates the approximate reciprocals of the square roots of the /// values stored in a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRSQRTPS / RSQRTPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the approximate /// reciprocals of the square roots of the values in the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rsqrt_ps(__m128 __a) { return __builtin_ia32_rsqrtps((__v4sf)__a); } /// Compares two 32-bit float values in the low-order bits of both /// operands and returns the lesser value in the low-order bits of the /// vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMINSS / MINSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// minimum value between both operands. The upper 96 bits are copied from /// the upper 96 bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_min_ss(__m128 __a, __m128 __b) { return __builtin_ia32_minss((__v4sf)__a, (__v4sf)__b); } /// Compares two 128-bit vectors of [4 x float] and returns the lesser /// of each pair of values. /// /// \headerfile /// /// This intrinsic corresponds to the VMINPS / MINPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. /// \returns A 128-bit vector of [4 x float] containing the minimum values /// between both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_min_ps(__m128 __a, __m128 __b) { return __builtin_ia32_minps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands and returns the greater value in the low-order bits of a 128-bit /// vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMAXSS / MAXSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// maximum value between both operands. The upper 96 bits are copied from /// the upper 96 bits of the first source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_max_ss(__m128 __a, __m128 __b) { return __builtin_ia32_maxss((__v4sf)__a, (__v4sf)__b); } /// Compares two 128-bit vectors of [4 x float] and returns the greater /// of each pair of values. /// /// \headerfile /// /// This intrinsic corresponds to the VMAXPS / MAXPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. /// \returns A 128-bit vector of [4 x float] containing the maximum values /// between both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_max_ps(__m128 __a, __m128 __b) { return __builtin_ia32_maxps((__v4sf)__a, (__v4sf)__b); } /// Performs a bitwise AND of two 128-bit vectors of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VANDPS / ANDPS instructions. /// /// \param __a /// A 128-bit vector containing one of the source operands. /// \param __b /// A 128-bit vector containing one of the source operands. /// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the /// values between both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_and_ps(__m128 __a, __m128 __b) { return (__m128)((__v4su)__a & (__v4su)__b); } /// Performs a bitwise AND of two 128-bit vectors of [4 x float], using /// the one's complement of the values contained in the first source /// operand. /// /// \headerfile /// /// This intrinsic corresponds to the VANDNPS / ANDNPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing the first source operand. The /// one's complement of this value is used in the bitwise AND. /// \param __b /// A 128-bit vector of [4 x float] containing the second source operand. /// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the /// one's complement of the first operand and the values in the second /// operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_andnot_ps(__m128 __a, __m128 __b) { return (__m128)(~(__v4su)__a & (__v4su)__b); } /// Performs a bitwise OR of two 128-bit vectors of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VORPS / ORPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// \returns A 128-bit vector of [4 x float] containing the bitwise OR of the /// values between both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_or_ps(__m128 __a, __m128 __b) { return (__m128)((__v4su)__a | (__v4su)__b); } /// Performs a bitwise exclusive OR of two 128-bit vectors of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS / XORPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the source operands. /// \param __b /// A 128-bit vector of [4 x float] containing one of the source operands. /// \returns A 128-bit vector of [4 x float] containing the bitwise exclusive OR /// of the values between both operands. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_xor_ps(__m128 __a, __m128 __b) { return (__m128)((__v4su)__a ^ (__v4su)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands for equality and returns the result of the comparison in the /// low-order bits of a vector [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPEQSS / CMPEQSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpeq_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpeqss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] for equality. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPEQPS / CMPEQPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpeq_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpeqps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is less than the /// corresponding value in the second operand and returns the result of the /// comparison in the low-order bits of a vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLTSS / CMPLTSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmplt_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpltss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are less than those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLTPS / CMPLTPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmplt_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpltps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is less than or /// equal to the corresponding value in the second operand and returns the /// result of the comparison in the low-order bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLESS / CMPLESS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmple_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpless((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are less than or equal to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLEPS / CMPLEPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmple_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpleps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is greater than /// the corresponding value in the second operand and returns the result of /// the comparison in the low-order bits of a vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLTSS / CMPLTSS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpgt_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_shufflevector((__v4sf)__a, (__v4sf)__builtin_ia32_cmpltss((__v4sf)__b, (__v4sf)__a), 4, 1, 2, 3); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are greater than those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLTPS / CMPLTPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpgt_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpltps((__v4sf)__b, (__v4sf)__a); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is greater than /// or equal to the corresponding value in the second operand and returns /// the result of the comparison in the low-order bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLESS / CMPLESS instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpge_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_shufflevector((__v4sf)__a, (__v4sf)__builtin_ia32_cmpless((__v4sf)__b, (__v4sf)__a), 4, 1, 2, 3); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are greater than or equal to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPLEPS / CMPLEPS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpge_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpleps((__v4sf)__b, (__v4sf)__a); } /// Compares two 32-bit float values in the low-order bits of both /// operands for inequality and returns the result of the comparison in the /// low-order bits of a vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNEQSS / CMPNEQSS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpneq_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpneqss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] for inequality. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNEQPS / CMPNEQPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpneq_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpneqps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is not less than /// the corresponding value in the second operand and returns the result of /// the comparison in the low-order bits of a vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLTSS / CMPNLTSS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnlt_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnltss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are not less than those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLTPS / CMPNLTPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnlt_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnltps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is not less than /// or equal to the corresponding value in the second operand and returns /// the result of the comparison in the low-order bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLESS / CMPNLESS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnle_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnless((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are not less than or equal to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLEPS / CMPNLEPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnle_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnleps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is not greater /// than the corresponding value in the second operand and returns the /// result of the comparison in the low-order bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLTSS / CMPNLTSS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpngt_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_shufflevector((__v4sf)__a, (__v4sf)__builtin_ia32_cmpnltss((__v4sf)__b, (__v4sf)__a), 4, 1, 2, 3); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are not greater than those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLTPS / CMPNLTPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpngt_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnltps((__v4sf)__b, (__v4sf)__a); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is not greater /// than or equal to the corresponding value in the second operand and /// returns the result of the comparison in the low-order bits of a vector /// of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLESS / CMPNLESS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnge_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_shufflevector((__v4sf)__a, (__v4sf)__builtin_ia32_cmpnless((__v4sf)__b, (__v4sf)__a), 4, 1, 2, 3); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are not greater than or equal to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPNLEPS / CMPNLEPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnge_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpnleps((__v4sf)__b, (__v4sf)__a); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is ordered with /// respect to the corresponding value in the second operand and returns the /// result of the comparison in the low-order bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPORDSS / CMPORDSS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpord_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpordss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are ordered with respect to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPORDPS / CMPORDPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpord_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpordps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the value in the first operand is unordered /// with respect to the corresponding value in the second operand and /// returns the result of the comparison in the low-order bits of a vector /// of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPUNORDSS / CMPUNORDSS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \param __b /// A 128-bit vector of [4 x float] containing one of the operands. The lower /// 32 bits of this operand are used in the comparison. /// \returns A 128-bit vector of [4 x float] containing the comparison results /// in the low-order bits. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpunord_ss(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpunordss((__v4sf)__a, (__v4sf)__b); } /// Compares each of the corresponding 32-bit float values of the /// 128-bit vectors of [4 x float] to determine if the values in the first /// operand are unordered with respect to those in the second operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCMPUNORDPS / CMPUNORDPS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns A 128-bit vector of [4 x float] containing the comparison results. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpunord_ps(__m128 __a, __m128 __b) { return (__m128)__builtin_ia32_cmpunordps((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands for equality and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the /// two lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comieq_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comieq((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the first operand is less than the second /// operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comilt_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comilt((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the first operand is less than or equal to the /// second operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comile_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comile((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the first operand is greater than the second /// operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the /// two lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comigt_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comigt((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the first operand is greater than or equal to /// the second operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comige_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comige((__v4sf)__a, (__v4sf)__b); } /// Compares two 32-bit float values in the low-order bits of both /// operands to determine if the first operand is not equal to the second /// operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 1 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VCOMISS / COMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the /// two lower 32-bit values is NaN, 1 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_comineq_ss(__m128 __a, __m128 __b) { return __builtin_ia32_comineq((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine equality and returns /// the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomieq_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomieq((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine if the first operand is /// less than the second operand and returns the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomilt_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomilt((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine if the first operand is /// less than or equal to the second operand and returns the result of the /// comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomile_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomile((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine if the first operand is /// greater than the second operand and returns the result of the /// comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomigt_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomigt((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine if the first operand is /// greater than or equal to the second operand and returns the result of /// the comparison. /// /// If either of the two lower 32-bit values is NaN, 0 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 0 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomige_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomige((__v4sf)__a, (__v4sf)__b); } /// Performs an unordered comparison of two 32-bit float values using /// the low-order bits of both operands to determine inequality and returns /// the result of the comparison. /// /// If either of the two lower 32-bit values is NaN, 1 is returned. /// /// \headerfile /// /// This intrinsic corresponds to the VUCOMISS / UCOMISS instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \param __b /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the comparison. /// \returns An integer containing the comparison results. If either of the two /// lower 32-bit values is NaN, 1 is returned. static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomineq_ss(__m128 __a, __m128 __b) { return __builtin_ia32_ucomineq((__v4sf)__a, (__v4sf)__b); } /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 32-bit integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSS2SI / CVTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 32-bit integer containing the converted value. static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtss_si32(__m128 __a) { return __builtin_ia32_cvtss2si((__v4sf)__a); } /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 32-bit integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSS2SI / CVTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 32-bit integer containing the converted value. static __inline__ int __DEFAULT_FN_ATTRS _mm_cvt_ss2si(__m128 __a) { return _mm_cvtss_si32(__a); } #ifdef __x86_64__ /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 64-bit integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSS2SI / CVTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 64-bit integer containing the converted value. static __inline__ long long __DEFAULT_FN_ATTRS _mm_cvtss_si64(__m128 __a) { return __builtin_ia32_cvtss2si64((__v4sf)__a); } #endif /// Converts two low-order float values in a 128-bit vector of /// [4 x float] into a 64-bit vector of [2 x i32]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPS2PI instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 64-bit integer vector containing the converted values. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi32(__m128 __a) { return (__m64)__builtin_ia32_cvtps2pi((__v4sf)__a); } /// Converts two low-order float values in a 128-bit vector of /// [4 x float] into a 64-bit vector of [2 x i32]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPS2PI instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 64-bit integer vector containing the converted values. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvt_ps2pi(__m128 __a) { return _mm_cvtps_pi32(__a); } /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 32-bit integer, truncating the result when it is /// inexact. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTTSS2SI / CVTTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 32-bit integer containing the converted value. static __inline__ int __DEFAULT_FN_ATTRS _mm_cvttss_si32(__m128 __a) { return __builtin_ia32_cvttss2si((__v4sf)__a); } /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 32-bit integer, truncating the result when it is /// inexact. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTTSS2SI / CVTTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 32-bit integer containing the converted value. static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtt_ss2si(__m128 __a) { return _mm_cvttss_si32(__a); } #ifdef __x86_64__ /// Converts a float value contained in the lower 32 bits of a vector of /// [4 x float] into a 64-bit integer, truncating the result when it is /// inexact. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTTSS2SI / CVTTSS2SI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the conversion. /// \returns A 64-bit integer containing the converted value. static __inline__ long long __DEFAULT_FN_ATTRS _mm_cvttss_si64(__m128 __a) { return __builtin_ia32_cvttss2si64((__v4sf)__a); } #endif /// Converts two low-order float values in a 128-bit vector of /// [4 x float] into a 64-bit vector of [2 x i32], truncating the result /// when it is inexact. /// /// \headerfile /// /// This intrinsic corresponds to the CVTTPS2PI / VTTPS2PI /// instructions. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 64-bit integer vector containing the converted values. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvttps_pi32(__m128 __a) { return (__m64)__builtin_ia32_cvttps2pi((__v4sf)__a); } /// Converts two low-order float values in a 128-bit vector of [4 x /// float] into a 64-bit vector of [2 x i32], truncating the result when it /// is inexact. /// /// \headerfile /// /// This intrinsic corresponds to the CVTTPS2PI instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 64-bit integer vector containing the converted values. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtt_ps2pi(__m128 __a) { return _mm_cvttps_pi32(__a); } /// Converts a 32-bit signed integer value into a floating point value /// and writes it to the lower 32 bits of the destination. The remaining /// higher order elements of the destination vector are copied from the /// corresponding elements in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSI2SS / CVTSI2SS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 32-bit signed integer operand containing the value to be converted. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// converted value of the second operand. The upper 96 bits are copied from /// the upper 96 bits of the first operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtsi32_ss(__m128 __a, int __b) { __a[0] = __b; return __a; } /// Converts a 32-bit signed integer value into a floating point value /// and writes it to the lower 32 bits of the destination. The remaining /// higher order elements of the destination are copied from the /// corresponding elements in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSI2SS / CVTSI2SS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 32-bit signed integer operand containing the value to be converted. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// converted value of the second operand. The upper 96 bits are copied from /// the upper 96 bits of the first operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvt_si2ss(__m128 __a, int __b) { return _mm_cvtsi32_ss(__a, __b); } #ifdef __x86_64__ /// Converts a 64-bit signed integer value into a floating point value /// and writes it to the lower 32 bits of the destination. The remaining /// higher order elements of the destination are copied from the /// corresponding elements in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTSI2SS / CVTSI2SS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 64-bit signed integer operand containing the value to be converted. /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the /// converted value of the second operand. The upper 96 bits are copied from /// the upper 96 bits of the first operand. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtsi64_ss(__m128 __a, long long __b) { __a[0] = __b; return __a; } #endif /// Converts two elements of a 64-bit vector of [2 x i32] into two /// floating point values and writes them to the lower 64-bits of the /// destination. The remaining higher order elements of the destination are /// copied from the corresponding elements in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 64-bit vector of [2 x i32]. The elements in this vector are converted /// and written to the corresponding low-order elements in the destination. /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the /// converted value of the second operand. The upper 64 bits are copied from /// the upper 64 bits of the first operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi32_ps(__m128 __a, __m64 __b) { return __builtin_ia32_cvtpi2ps((__v4sf)__a, (__v2si)__b); } /// Converts two elements of a 64-bit vector of [2 x i32] into two /// floating point values and writes them to the lower 64-bits of the /// destination. The remaining higher order elements of the destination are /// copied from the corresponding elements in the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 64-bit vector of [2 x i32]. The elements in this vector are converted /// and written to the corresponding low-order elements in the destination. /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the /// converted value from the second operand. The upper 64 bits are copied /// from the upper 64 bits of the first operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvt_pi2ps(__m128 __a, __m64 __b) { return _mm_cvtpi32_ps(__a, __b); } /// Extracts a float value contained in the lower 32 bits of a vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are /// used in the extraction. /// \returns A 32-bit float containing the extracted value. static __inline__ float __DEFAULT_FN_ATTRS _mm_cvtss_f32(__m128 __a) { return __a[0]; } /// Loads two packed float values from the address \a __p into the /// high-order bits of a 128-bit vector of [4 x float]. The low-order bits /// are copied from the low-order bits of the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVHPD / MOVHPD instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. Bits [63:0] are written to bits [63:0] /// of the destination. /// \param __p /// A pointer to two packed float values. Bits [63:0] are written to bits /// [127:64] of the destination. /// \returns A 128-bit vector of [4 x float] containing the moved values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadh_pi(__m128 __a, const __m64 *__p) { typedef float __mm_loadh_pi_v2f32 __attribute__((__vector_size__(8))); struct __mm_loadh_pi_struct { __mm_loadh_pi_v2f32 __u; } __attribute__((__packed__, __may_alias__)); __mm_loadh_pi_v2f32 __b = ((const struct __mm_loadh_pi_struct*)__p)->__u; __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1); return __builtin_shufflevector(__a, __bb, 0, 1, 4, 5); } /// Loads two packed float values from the address \a __p into the /// low-order bits of a 128-bit vector of [4 x float]. The high-order bits /// are copied from the high-order bits of the first operand. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVLPD / MOVLPD instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. Bits [127:64] are written to bits /// [127:64] of the destination. /// \param __p /// A pointer to two packed float values. Bits [63:0] are written to bits /// [63:0] of the destination. /// \returns A 128-bit vector of [4 x float] containing the moved values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadl_pi(__m128 __a, const __m64 *__p) { typedef float __mm_loadl_pi_v2f32 __attribute__((__vector_size__(8))); struct __mm_loadl_pi_struct { __mm_loadl_pi_v2f32 __u; } __attribute__((__packed__, __may_alias__)); __mm_loadl_pi_v2f32 __b = ((const struct __mm_loadl_pi_struct*)__p)->__u; __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1); return __builtin_shufflevector(__a, __bb, 4, 5, 2, 3); } /// Constructs a 128-bit floating-point vector of [4 x float]. The lower /// 32 bits of the vector are initialized with the single-precision /// floating-point value loaded from a specified memory location. The upper /// 96 bits are set to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVSS / MOVSS instruction. /// /// \param __p /// A pointer to a 32-bit memory location containing a single-precision /// floating-point value. /// \returns An initialized 128-bit floating-point vector of [4 x float]. The /// lower 32 bits contain the value loaded from the memory location. The /// upper 96 bits are set to zero. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load_ss(const float *__p) { struct __mm_load_ss_struct { float __u; } __attribute__((__packed__, __may_alias__)); float __u = ((const struct __mm_load_ss_struct*)__p)->__u; return __extension__ (__m128){ __u, 0, 0, 0 }; } /// Loads a 32-bit float value and duplicates it to all four vector /// elements of a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTSS / MOVSS + shuffling /// instruction. /// /// \param __p /// A pointer to a float value to be loaded and duplicated. /// \returns A 128-bit vector of [4 x float] containing the loaded and /// duplicated values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load1_ps(const float *__p) { struct __mm_load1_ps_struct { float __u; } __attribute__((__packed__, __may_alias__)); float __u = ((const struct __mm_load1_ps_struct*)__p)->__u; return __extension__ (__m128){ __u, __u, __u, __u }; } #define _mm_load_ps1(p) _mm_load1_ps(p) /// Loads a 128-bit floating-point vector of [4 x float] from an aligned /// memory location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS / MOVAPS instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location has to be 128-bit aligned. /// \returns A 128-bit vector of [4 x float] containing the loaded values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load_ps(const float *__p) { return *(const __m128*)__p; } /// Loads a 128-bit floating-point vector of [4 x float] from an /// unaligned memory location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPS / MOVUPS instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location does not have to be aligned. /// \returns A 128-bit vector of [4 x float] containing the loaded values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadu_ps(const float *__p) { struct __loadu_ps { __m128_u __v; } __attribute__((__packed__, __may_alias__)); return ((const struct __loadu_ps*)__p)->__v; } /// Loads four packed float values, in reverse order, from an aligned /// memory location to 32-bit elements in a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS / MOVAPS + shuffling /// instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location has to be 128-bit aligned. /// \returns A 128-bit vector of [4 x float] containing the moved values, loaded /// in reverse order. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadr_ps(const float *__p) { __m128 __a = _mm_load_ps(__p); return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0); } /// Create a 128-bit vector of [4 x float] with undefined values. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \returns A 128-bit vector of [4 x float] containing undefined values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_undefined_ps(void) { return (__m128)__builtin_ia32_undef128(); } /// Constructs a 128-bit floating-point vector of [4 x float]. The lower /// 32 bits of the vector are initialized with the specified single-precision /// floating-point value. The upper 96 bits are set to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVSS / MOVSS instruction. /// /// \param __w /// A single-precision floating-point value used to initialize the lower 32 /// bits of the result. /// \returns An initialized 128-bit floating-point vector of [4 x float]. The /// lower 32 bits contain the value provided in the source operand. The /// upper 96 bits are set to zero. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ss(float __w) { return __extension__ (__m128){ __w, 0, 0, 0 }; } /// Constructs a 128-bit floating-point vector of [4 x float], with each /// of the four single-precision floating-point vector elements set to the /// specified single-precision floating-point value. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS / PERMILPS instruction. /// /// \param __w /// A single-precision floating-point value used to initialize each vector /// element of the result. /// \returns An initialized 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set1_ps(float __w) { return __extension__ (__m128){ __w, __w, __w, __w }; } /* Microsoft specific. */ /// Constructs a 128-bit floating-point vector of [4 x float], with each /// of the four single-precision floating-point vector elements set to the /// specified single-precision floating-point value. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS / PERMILPS instruction. /// /// \param __w /// A single-precision floating-point value used to initialize each vector /// element of the result. /// \returns An initialized 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ps1(float __w) { return _mm_set1_ps(__w); } /// Constructs a 128-bit floating-point vector of [4 x float] /// initialized with the specified single-precision floating-point values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __z /// A single-precision floating-point value used to initialize bits [127:96] /// of the result. /// \param __y /// A single-precision floating-point value used to initialize bits [95:64] /// of the result. /// \param __x /// A single-precision floating-point value used to initialize bits [63:32] /// of the result. /// \param __w /// A single-precision floating-point value used to initialize bits [31:0] /// of the result. /// \returns An initialized 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ps(float __z, float __y, float __x, float __w) { return __extension__ (__m128){ __w, __x, __y, __z }; } /// Constructs a 128-bit floating-point vector of [4 x float], /// initialized in reverse order with the specified 32-bit single-precision /// float-point values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __z /// A single-precision floating-point value used to initialize bits [31:0] /// of the result. /// \param __y /// A single-precision floating-point value used to initialize bits [63:32] /// of the result. /// \param __x /// A single-precision floating-point value used to initialize bits [95:64] /// of the result. /// \param __w /// A single-precision floating-point value used to initialize bits [127:96] /// of the result. /// \returns An initialized 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_setr_ps(float __z, float __y, float __x, float __w) { return __extension__ (__m128){ __z, __y, __x, __w }; } /// Constructs a 128-bit floating-point vector of [4 x float] initialized /// to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS / XORPS instruction. /// /// \returns An initialized 128-bit floating-point vector of [4 x float] with /// all elements set to zero. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_setzero_ps(void) { return __extension__ (__m128){ 0, 0, 0, 0 }; } /// Stores the upper 64 bits of a 128-bit vector of [4 x float] to a /// memory location. /// /// \headerfile /// /// This intrinsic corresponds to the VPEXTRQ / PEXTRQ instruction. /// /// \param __p /// A pointer to a 64-bit memory location. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_storeh_pi(__m64 *__p, __m128 __a) { typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8))); struct __mm_storeh_pi_struct { __mm_storeh_pi_v2f32 __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 2, 3); } /// Stores the lower 64 bits of a 128-bit vector of [4 x float] to a /// memory location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVLPS / MOVLPS instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_storel_pi(__m64 *__p, __m128 __a) { typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8))); struct __mm_storeh_pi_struct { __mm_storeh_pi_v2f32 __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 0, 1); } /// Stores the lower 32 bits of a 128-bit vector of [4 x float] to a /// memory location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVSS / MOVSS instruction. /// /// \param __p /// A pointer to a 32-bit memory location. /// \param __a /// A 128-bit vector of [4 x float] containing the value to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ss(float *__p, __m128 __a) { struct __mm_store_ss_struct { float __u; } __attribute__((__packed__, __may_alias__)); ((struct __mm_store_ss_struct*)__p)->__u = __a[0]; } /// Stores a 128-bit vector of [4 x float] to an unaligned memory /// location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPS / MOVUPS instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location does not have to be aligned. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_storeu_ps(float *__p, __m128 __a) { struct __storeu_ps { __m128_u __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_ps*)__p)->__v = __a; } /// Stores a 128-bit vector of [4 x float] into an aligned memory /// location. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS / MOVAPS instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location has to be 16-byte aligned. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ps(float *__p, __m128 __a) { *(__m128*)__p = __a; } /// Stores the lower 32 bits of a 128-bit vector of [4 x float] into /// four contiguous elements in an aligned memory location. /// /// \headerfile /// /// This intrinsic corresponds to VMOVAPS / MOVAPS + shuffling /// instruction. /// /// \param __p /// A pointer to a 128-bit memory location. /// \param __a /// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each /// of the four contiguous elements pointed by \a __p. static __inline__ void __DEFAULT_FN_ATTRS _mm_store1_ps(float *__p, __m128 __a) { __a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 0, 0, 0); _mm_store_ps(__p, __a); } /// Stores the lower 32 bits of a 128-bit vector of [4 x float] into /// four contiguous elements in an aligned memory location. /// /// \headerfile /// /// This intrinsic corresponds to VMOVAPS / MOVAPS + shuffling /// instruction. /// /// \param __p /// A pointer to a 128-bit memory location. /// \param __a /// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each /// of the four contiguous elements pointed by \a __p. static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ps1(float *__p, __m128 __a) { _mm_store1_ps(__p, __a); } /// Stores float values from a 128-bit vector of [4 x float] to an /// aligned memory location in reverse order. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS / MOVAPS + shuffling /// instruction. /// /// \param __p /// A pointer to a 128-bit memory location. The address of the memory /// location has to be 128-bit aligned. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline__ void __DEFAULT_FN_ATTRS _mm_storer_ps(float *__p, __m128 __a) { __a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0); _mm_store_ps(__p, __a); } #define _MM_HINT_ET0 7 #define _MM_HINT_ET1 6 #define _MM_HINT_T0 3 #define _MM_HINT_T1 2 #define _MM_HINT_T2 1 #define _MM_HINT_NTA 0 #ifndef _MSC_VER /* FIXME: We have to #define this because "sel" must be a constant integer, and Sema doesn't do any form of constant propagation yet. */ /// Loads one cache line of data from the specified address to a location /// closer to the processor. /// /// \headerfile /// /// \code /// void _mm_prefetch(const void * a, const int sel); /// \endcode /// /// This intrinsic corresponds to the PREFETCHNTA instruction. /// /// \param a /// A pointer to a memory location containing a cache line of data. /// \param sel /// A predefined integer constant specifying the type of prefetch /// operation: \n /// _MM_HINT_NTA: Move data using the non-temporal access (NTA) hint. The /// PREFETCHNTA instruction will be generated. \n /// _MM_HINT_T0: Move data using the T0 hint. The PREFETCHT0 instruction will /// be generated. \n /// _MM_HINT_T1: Move data using the T1 hint. The PREFETCHT1 instruction will /// be generated. \n /// _MM_HINT_T2: Move data using the T2 hint. The PREFETCHT2 instruction will /// be generated. #define _mm_prefetch(a, sel) (__builtin_prefetch((const void *)(a), \ ((sel) >> 2) & 1, (sel) & 0x3)) #endif /// Stores a 64-bit integer in the specified aligned memory location. To /// minimize caching, the data is flagged as non-temporal (unlikely to be /// used again soon). /// /// \headerfile /// /// This intrinsic corresponds to the MOVNTQ instruction. /// /// \param __p /// A pointer to an aligned memory location used to store the register value. /// \param __a /// A 64-bit integer containing the value to be stored. static __inline__ void __DEFAULT_FN_ATTRS_MMX _mm_stream_pi(__m64 *__p, __m64 __a) { __builtin_ia32_movntq(__p, __a); } /// Moves packed float values from a 128-bit vector of [4 x float] to a /// 128-bit aligned memory location. To minimize caching, the data is flagged /// as non-temporal (unlikely to be used again soon). /// /// \headerfile /// /// This intrinsic corresponds to the VMOVNTPS / MOVNTPS instruction. /// /// \param __p /// A pointer to a 128-bit aligned memory location that will receive the /// single-precision floating-point values. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be moved. static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_ps(float *__p, __m128 __a) { __builtin_nontemporal_store((__v4sf)__a, (__v4sf*)__p); } #if defined(__cplusplus) extern "C" { #endif /// Forces strong memory ordering (serialization) between store /// instructions preceding this instruction and store instructions following /// this instruction, ensuring the system completes all previous stores /// before executing subsequent stores. /// /// \headerfile /// /// This intrinsic corresponds to the SFENCE instruction. /// void _mm_sfence(void); #if defined(__cplusplus) } // extern "C" #endif /// Extracts 16-bit element from a 64-bit vector of [4 x i16] and /// returns it, as specified by the immediate integer operand. /// /// \headerfile /// /// \code /// int _mm_extract_pi16(__m64 a, int n); /// \endcode /// /// This intrinsic corresponds to the VPEXTRW / PEXTRW instruction. /// /// \param a /// A 64-bit vector of [4 x i16]. /// \param n /// An immediate integer operand that determines which bits are extracted: \n /// 0: Bits [15:0] are copied to the destination. \n /// 1: Bits [31:16] are copied to the destination. \n /// 2: Bits [47:32] are copied to the destination. \n /// 3: Bits [63:48] are copied to the destination. /// \returns A 16-bit integer containing the extracted 16 bits of packed data. #define _mm_extract_pi16(a, n) \ (int)__builtin_ia32_vec_ext_v4hi((__v4hi)a, (int)n) /// Copies data from the 64-bit vector of [4 x i16] to the destination, /// and inserts the lower 16-bits of an integer operand at the 16-bit offset /// specified by the immediate operand \a n. /// /// \headerfile /// /// \code /// __m64 _mm_insert_pi16(__m64 a, int d, int n); /// \endcode /// /// This intrinsic corresponds to the PINSRW instruction. /// /// \param a /// A 64-bit vector of [4 x i16]. /// \param d /// An integer. The lower 16-bit value from this operand is written to the /// destination at the offset specified by operand \a n. /// \param n /// An immediate integer operant that determines which the bits to be used /// in the destination. \n /// 0: Bits [15:0] are copied to the destination. \n /// 1: Bits [31:16] are copied to the destination. \n /// 2: Bits [47:32] are copied to the destination. \n /// 3: Bits [63:48] are copied to the destination. \n /// The remaining bits in the destination are copied from the corresponding /// bits in operand \a a. /// \returns A 64-bit integer vector containing the copied packed data from the /// operands. #define _mm_insert_pi16(a, d, n) \ (__m64)__builtin_ia32_vec_set_v4hi((__v4hi)a, (int)d, (int)n) /// Compares each of the corresponding packed 16-bit integer values of /// the 64-bit integer vectors, and writes the greater value to the /// corresponding bits in the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMAXSW instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the comparison results. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_max_pi16(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pmaxsw((__v4hi)__a, (__v4hi)__b); } /// Compares each of the corresponding packed 8-bit unsigned integer /// values of the 64-bit integer vectors, and writes the greater value to the /// corresponding bits in the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMAXUB instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the comparison results. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_max_pu8(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pmaxub((__v8qi)__a, (__v8qi)__b); } /// Compares each of the corresponding packed 16-bit integer values of /// the 64-bit integer vectors, and writes the lesser value to the /// corresponding bits in the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMINSW instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the comparison results. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_min_pi16(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pminsw((__v4hi)__a, (__v4hi)__b); } /// Compares each of the corresponding packed 8-bit unsigned integer /// values of the 64-bit integer vectors, and writes the lesser value to the /// corresponding bits in the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMINUB instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the comparison results. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_min_pu8(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pminub((__v8qi)__a, (__v8qi)__b); } /// Takes the most significant bit from each 8-bit element in a 64-bit /// integer vector to create an 8-bit mask value. Zero-extends the value to /// 32-bit integer and writes it to the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMOVMSKB instruction. /// /// \param __a /// A 64-bit integer vector containing the values with bits to be extracted. /// \returns The most significant bit from each 8-bit element in \a __a, /// written to bits [7:0]. static __inline__ int __DEFAULT_FN_ATTRS_MMX _mm_movemask_pi8(__m64 __a) { return __builtin_ia32_pmovmskb((__v8qi)__a); } /// Multiplies packed 16-bit unsigned integer values and writes the /// high-order 16 bits of each 32-bit product to the corresponding bits in /// the destination. /// /// \headerfile /// /// This intrinsic corresponds to the PMULHUW instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the products of both operands. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_mulhi_pu16(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pmulhuw((__v4hi)__a, (__v4hi)__b); } /// Shuffles the 4 16-bit integers from a 64-bit integer vector to the /// destination, as specified by the immediate value operand. /// /// \headerfile /// /// \code /// __m64 _mm_shuffle_pi16(__m64 a, const int n); /// \endcode /// /// This intrinsic corresponds to the PSHUFW instruction. /// /// \param a /// A 64-bit integer vector containing the values to be shuffled. /// \param n /// An immediate value containing an 8-bit value specifying which elements to /// copy from \a a. The destinations within the 64-bit destination are /// assigned values as follows: \n /// Bits [1:0] are used to assign values to bits [15:0] in the /// destination. \n /// Bits [3:2] are used to assign values to bits [31:16] in the /// destination. \n /// Bits [5:4] are used to assign values to bits [47:32] in the /// destination. \n /// Bits [7:6] are used to assign values to bits [63:48] in the /// destination. \n /// Bit value assignments: \n /// 00: assigned from bits [15:0] of \a a. \n /// 01: assigned from bits [31:16] of \a a. \n /// 10: assigned from bits [47:32] of \a a. \n /// 11: assigned from bits [63:48] of \a a. /// \returns A 64-bit integer vector containing the shuffled values. #define _mm_shuffle_pi16(a, n) \ (__m64)__builtin_ia32_pshufw((__v4hi)(__m64)(a), (n)) /// Conditionally copies the values from each 8-bit element in the first /// 64-bit integer vector operand to the specified memory location, as /// specified by the most significant bit in the corresponding element in the /// second 64-bit integer vector operand. /// /// To minimize caching, the data is flagged as non-temporal /// (unlikely to be used again soon). /// /// \headerfile /// /// This intrinsic corresponds to the MASKMOVQ instruction. /// /// \param __d /// A 64-bit integer vector containing the values with elements to be copied. /// \param __n /// A 64-bit integer vector operand. The most significant bit from each 8-bit /// element determines whether the corresponding element in operand \a __d /// is copied. If the most significant bit of a given element is 1, the /// corresponding element in operand \a __d is copied. /// \param __p /// A pointer to a 64-bit memory location that will receive the conditionally /// copied integer values. The address of the memory location does not have /// to be aligned. static __inline__ void __DEFAULT_FN_ATTRS_MMX _mm_maskmove_si64(__m64 __d, __m64 __n, char *__p) { __builtin_ia32_maskmovq((__v8qi)__d, (__v8qi)__n, __p); } /// Computes the rounded averages of the packed unsigned 8-bit integer /// values and writes the averages to the corresponding bits in the /// destination. /// /// \headerfile /// /// This intrinsic corresponds to the PAVGB instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the averages of both operands. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_avg_pu8(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pavgb((__v8qi)__a, (__v8qi)__b); } /// Computes the rounded averages of the packed unsigned 16-bit integer /// values and writes the averages to the corresponding bits in the /// destination. /// /// \headerfile /// /// This intrinsic corresponds to the PAVGW instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector containing the averages of both operands. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_avg_pu16(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_pavgw((__v4hi)__a, (__v4hi)__b); } /// Subtracts the corresponding 8-bit unsigned integer values of the two /// 64-bit vector operands and computes the absolute value for each of the /// difference. Then sum of the 8 absolute differences is written to the /// bits [15:0] of the destination; the remaining bits [63:16] are cleared. /// /// \headerfile /// /// This intrinsic corresponds to the PSADBW instruction. /// /// \param __a /// A 64-bit integer vector containing one of the source operands. /// \param __b /// A 64-bit integer vector containing one of the source operands. /// \returns A 64-bit integer vector whose lower 16 bits contain the sums of the /// sets of absolute differences between both operands. The upper bits are /// cleared. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_sad_pu8(__m64 __a, __m64 __b) { return (__m64)__builtin_ia32_psadbw((__v8qi)__a, (__v8qi)__b); } #if defined(__cplusplus) extern "C" { #endif /// Returns the contents of the MXCSR register as a 32-bit unsigned /// integer value. /// /// There are several groups of macros associated with this /// intrinsic, including: ///
    ///
  • /// For checking exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, /// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, /// _MM_EXCEPT_INEXACT. There is a convenience wrapper /// _MM_GET_EXCEPTION_STATE(). ///
  • ///
  • /// For checking exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW, /// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT. /// There is a convenience wrapper _MM_GET_EXCEPTION_MASK(). ///
  • ///
  • /// For checking rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, /// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper /// _MM_GET_ROUNDING_MODE(). ///
  • ///
  • /// For checking flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF. /// There is a convenience wrapper _MM_GET_FLUSH_ZERO_MODE(). ///
  • ///
  • /// For checking denormals-are-zero mode: _MM_DENORMALS_ZERO_ON, /// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper /// _MM_GET_DENORMALS_ZERO_MODE(). ///
  • ///
/// /// For example, the following expression checks if an overflow exception has /// occurred: /// \code /// ( _mm_getcsr() & _MM_EXCEPT_OVERFLOW ) /// \endcode /// /// The following expression gets the current rounding mode: /// \code /// _MM_GET_ROUNDING_MODE() /// \endcode /// /// \headerfile /// /// This intrinsic corresponds to the VSTMXCSR / STMXCSR instruction. /// /// \returns A 32-bit unsigned integer containing the contents of the MXCSR /// register. unsigned int _mm_getcsr(void); /// Sets the MXCSR register with the 32-bit unsigned integer value. /// /// There are several groups of macros associated with this intrinsic, /// including: ///
    ///
  • /// For setting exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, /// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, /// _MM_EXCEPT_INEXACT. There is a convenience wrapper /// _MM_SET_EXCEPTION_STATE(x) where x is one of these macros. ///
  • ///
  • /// For setting exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW, /// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT. /// There is a convenience wrapper _MM_SET_EXCEPTION_MASK(x) where x is one /// of these macros. ///
  • ///
  • /// For setting rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, /// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper /// _MM_SET_ROUNDING_MODE(x) where x is one of these macros. ///
  • ///
  • /// For setting flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF. /// There is a convenience wrapper _MM_SET_FLUSH_ZERO_MODE(x) where x is /// one of these macros. ///
  • ///
  • /// For setting denormals-are-zero mode: _MM_DENORMALS_ZERO_ON, /// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper /// _MM_SET_DENORMALS_ZERO_MODE(x) where x is one of these macros. ///
  • ///
/// /// For example, the following expression causes subsequent floating-point /// operations to round up: /// _mm_setcsr(_mm_getcsr() | _MM_ROUND_UP) /// /// The following example sets the DAZ and FTZ flags: /// \code /// void setFlags() { /// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); /// _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); /// } /// \endcode /// /// \headerfile /// /// This intrinsic corresponds to the VLDMXCSR / LDMXCSR instruction. /// /// \param __i /// A 32-bit unsigned integer value to be written to the MXCSR register. void _mm_setcsr(unsigned int __i); #if defined(__cplusplus) } // extern "C" #endif /// Selects 4 float values from the 128-bit operands of [4 x float], as /// specified by the immediate value operand. /// /// \headerfile /// /// \code /// __m128 _mm_shuffle_ps(__m128 a, __m128 b, const int mask); /// \endcode /// /// This intrinsic corresponds to the VSHUFPS / SHUFPS instruction. /// /// \param a /// A 128-bit vector of [4 x float]. /// \param b /// A 128-bit vector of [4 x float]. /// \param mask /// An immediate value containing an 8-bit value specifying which elements to /// copy from \a a and \a b. \n /// Bits [3:0] specify the values copied from operand \a a. \n /// Bits [7:4] specify the values copied from operand \a b. \n /// The destinations within the 128-bit destination are assigned values as /// follows: \n /// Bits [1:0] are used to assign values to bits [31:0] in the /// destination. \n /// Bits [3:2] are used to assign values to bits [63:32] in the /// destination. \n /// Bits [5:4] are used to assign values to bits [95:64] in the /// destination. \n /// Bits [7:6] are used to assign values to bits [127:96] in the /// destination. \n /// Bit value assignments: \n /// 00: Bits [31:0] copied from the specified operand. \n /// 01: Bits [63:32] copied from the specified operand. \n /// 10: Bits [95:64] copied from the specified operand. \n /// 11: Bits [127:96] copied from the specified operand. /// \returns A 128-bit vector of [4 x float] containing the shuffled values. #define _mm_shuffle_ps(a, b, mask) \ (__m128)__builtin_ia32_shufps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), \ (int)(mask)) /// Unpacks the high-order (index 2,3) values from two 128-bit vectors of /// [4 x float] and interleaves them into a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKHPS / UNPCKHPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. \n /// Bits [95:64] are written to bits [31:0] of the destination. \n /// Bits [127:96] are written to bits [95:64] of the destination. /// \param __b /// A 128-bit vector of [4 x float]. /// Bits [95:64] are written to bits [63:32] of the destination. \n /// Bits [127:96] are written to bits [127:96] of the destination. /// \returns A 128-bit vector of [4 x float] containing the interleaved values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_unpackhi_ps(__m128 __a, __m128 __b) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 2, 6, 3, 7); } /// Unpacks the low-order (index 0,1) values from two 128-bit vectors of /// [4 x float] and interleaves them into a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPS / UNPCKLPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. \n /// Bits [31:0] are written to bits [31:0] of the destination. \n /// Bits [63:32] are written to bits [95:64] of the destination. /// \param __b /// A 128-bit vector of [4 x float]. \n /// Bits [31:0] are written to bits [63:32] of the destination. \n /// Bits [63:32] are written to bits [127:96] of the destination. /// \returns A 128-bit vector of [4 x float] containing the interleaved values. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_unpacklo_ps(__m128 __a, __m128 __b) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 4, 1, 5); } /// Constructs a 128-bit floating-point vector of [4 x float]. The lower /// 32 bits are set to the lower 32 bits of the second parameter. The upper /// 96 bits are set to the upper 96 bits of the first parameter. /// /// \headerfile /// /// This intrinsic corresponds to the VBLENDPS / BLENDPS / MOVSS /// instruction. /// /// \param __a /// A 128-bit floating-point vector of [4 x float]. The upper 96 bits are /// written to the upper 96 bits of the result. /// \param __b /// A 128-bit floating-point vector of [4 x float]. The lower 32 bits are /// written to the lower 32 bits of the result. /// \returns A 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_move_ss(__m128 __a, __m128 __b) { __a[0] = __b[0]; return __a; } /// Constructs a 128-bit floating-point vector of [4 x float]. The lower /// 64 bits are set to the upper 64 bits of the second parameter. The upper /// 64 bits are set to the upper 64 bits of the first parameter. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKHPD / UNPCKHPD instruction. /// /// \param __a /// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are /// written to the upper 64 bits of the result. /// \param __b /// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are /// written to the lower 64 bits of the result. /// \returns A 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_movehl_ps(__m128 __a, __m128 __b) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 6, 7, 2, 3); } /// Constructs a 128-bit floating-point vector of [4 x float]. The lower /// 64 bits are set to the lower 64 bits of the first parameter. The upper /// 64 bits are set to the lower 64 bits of the second parameter. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPD / UNPCKLPD instruction. /// /// \param __a /// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are /// written to the lower 64 bits of the result. /// \param __b /// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are /// written to the upper 64 bits of the result. /// \returns A 128-bit floating-point vector of [4 x float]. static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_movelh_ps(__m128 __a, __m128 __b) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 1, 4, 5); } /// Converts a 64-bit vector of [4 x i16] into a 128-bit vector of [4 x /// float]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS + COMPOSITE instruction. /// /// \param __a /// A 64-bit vector of [4 x i16]. The elements of the destination are copied /// from the corresponding elements in this operand. /// \returns A 128-bit vector of [4 x float] containing the copied and converted /// values from the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi16_ps(__m64 __a) { __m64 __b, __c; __m128 __r; __b = _mm_setzero_si64(); __b = _mm_cmpgt_pi16(__b, __a); __c = _mm_unpackhi_pi16(__a, __b); __r = _mm_setzero_ps(); __r = _mm_cvtpi32_ps(__r, __c); __r = _mm_movelh_ps(__r, __r); __c = _mm_unpacklo_pi16(__a, __b); __r = _mm_cvtpi32_ps(__r, __c); return __r; } /// Converts a 64-bit vector of 16-bit unsigned integer values into a /// 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS + COMPOSITE instruction. /// /// \param __a /// A 64-bit vector of 16-bit unsigned integer values. The elements of the /// destination are copied from the corresponding elements in this operand. /// \returns A 128-bit vector of [4 x float] containing the copied and converted /// values from the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpu16_ps(__m64 __a) { __m64 __b, __c; __m128 __r; __b = _mm_setzero_si64(); __c = _mm_unpackhi_pi16(__a, __b); __r = _mm_setzero_ps(); __r = _mm_cvtpi32_ps(__r, __c); __r = _mm_movelh_ps(__r, __r); __c = _mm_unpacklo_pi16(__a, __b); __r = _mm_cvtpi32_ps(__r, __c); return __r; } /// Converts the lower four 8-bit values from a 64-bit vector of [8 x i8] /// into a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS + COMPOSITE instruction. /// /// \param __a /// A 64-bit vector of [8 x i8]. The elements of the destination are copied /// from the corresponding lower 4 elements in this operand. /// \returns A 128-bit vector of [4 x float] containing the copied and converted /// values from the operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi8_ps(__m64 __a) { __m64 __b; __b = _mm_setzero_si64(); __b = _mm_cmpgt_pi8(__b, __a); __b = _mm_unpacklo_pi8(__a, __b); return _mm_cvtpi16_ps(__b); } /// Converts the lower four unsigned 8-bit integer values from a 64-bit /// vector of [8 x u8] into a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS + COMPOSITE instruction. /// /// \param __a /// A 64-bit vector of unsigned 8-bit integer values. The elements of the /// destination are copied from the corresponding lower 4 elements in this /// operand. /// \returns A 128-bit vector of [4 x float] containing the copied and converted /// values from the source operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpu8_ps(__m64 __a) { __m64 __b; __b = _mm_setzero_si64(); __b = _mm_unpacklo_pi8(__a, __b); return _mm_cvtpi16_ps(__b); } /// Converts the two 32-bit signed integer values from each 64-bit vector /// operand of [2 x i32] into a 128-bit vector of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPI2PS + COMPOSITE instruction. /// /// \param __a /// A 64-bit vector of [2 x i32]. The lower elements of the destination are /// copied from the elements in this operand. /// \param __b /// A 64-bit vector of [2 x i32]. The upper elements of the destination are /// copied from the elements in this operand. /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the /// copied and converted values from the first operand. The upper 64 bits /// contain the copied and converted values from the second operand. static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi32x2_ps(__m64 __a, __m64 __b) { __m128 __c; __c = _mm_setzero_ps(); __c = _mm_cvtpi32_ps(__c, __b); __c = _mm_movelh_ps(__c, __c); return _mm_cvtpi32_ps(__c, __a); } /// Converts each single-precision floating-point element of a 128-bit /// floating-point vector of [4 x float] into a 16-bit signed integer, and /// packs the results into a 64-bit integer vector of [4 x i16]. /// /// If the floating-point element is NaN or infinity, or if the /// floating-point element is greater than 0x7FFFFFFF or less than -0x8000, /// it is converted to 0x8000. Otherwise if the floating-point element is /// greater than 0x7FFF, it is converted to 0x7FFF. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPS2PI + COMPOSITE instruction. /// /// \param __a /// A 128-bit floating-point vector of [4 x float]. /// \returns A 64-bit integer vector of [4 x i16] containing the converted /// values. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi16(__m128 __a) { __m64 __b, __c; __b = _mm_cvtps_pi32(__a); __a = _mm_movehl_ps(__a, __a); __c = _mm_cvtps_pi32(__a); return _mm_packs_pi32(__b, __c); } /// Converts each single-precision floating-point element of a 128-bit /// floating-point vector of [4 x float] into an 8-bit signed integer, and /// packs the results into the lower 32 bits of a 64-bit integer vector of /// [8 x i8]. The upper 32 bits of the vector are set to 0. /// /// If the floating-point element is NaN or infinity, or if the /// floating-point element is greater than 0x7FFFFFFF or less than -0x80, it /// is converted to 0x80. Otherwise if the floating-point element is greater /// than 0x7F, it is converted to 0x7F. /// /// \headerfile /// /// This intrinsic corresponds to the CVTPS2PI + COMPOSITE instruction. /// /// \param __a /// 128-bit floating-point vector of [4 x float]. /// \returns A 64-bit integer vector of [8 x i8]. The lower 32 bits contain the /// converted values and the uppper 32 bits are set to zero. static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi8(__m128 __a) { __m64 __b, __c; __b = _mm_cvtps_pi16(__a); __c = _mm_setzero_si64(); return _mm_packs_pi16(__b, __c); } /// Extracts the sign bits from each single-precision floating-point /// element of a 128-bit floating-point vector of [4 x float] and returns the /// sign bits in bits [0:3] of the result. Bits [31:4] of the result are set /// to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVMSKPS / MOVMSKPS instruction. /// /// \param __a /// A 128-bit floating-point vector of [4 x float]. /// \returns A 32-bit integer value. Bits [3:0] contain the sign bits from each /// single-precision floating-point element of the parameter. Bits [31:4] are /// set to zero. static __inline__ int __DEFAULT_FN_ATTRS _mm_movemask_ps(__m128 __a) { return __builtin_ia32_movmskps((__v4sf)__a); } #define _MM_ALIGN16 __attribute__((aligned(16))) #define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w)) #define _MM_EXCEPT_INVALID (0x0001U) #define _MM_EXCEPT_DENORM (0x0002U) #define _MM_EXCEPT_DIV_ZERO (0x0004U) #define _MM_EXCEPT_OVERFLOW (0x0008U) #define _MM_EXCEPT_UNDERFLOW (0x0010U) #define _MM_EXCEPT_INEXACT (0x0020U) #define _MM_EXCEPT_MASK (0x003fU) #define _MM_MASK_INVALID (0x0080U) #define _MM_MASK_DENORM (0x0100U) #define _MM_MASK_DIV_ZERO (0x0200U) #define _MM_MASK_OVERFLOW (0x0400U) #define _MM_MASK_UNDERFLOW (0x0800U) #define _MM_MASK_INEXACT (0x1000U) #define _MM_MASK_MASK (0x1f80U) #define _MM_ROUND_NEAREST (0x0000U) #define _MM_ROUND_DOWN (0x2000U) #define _MM_ROUND_UP (0x4000U) #define _MM_ROUND_TOWARD_ZERO (0x6000U) #define _MM_ROUND_MASK (0x6000U) #define _MM_FLUSH_ZERO_MASK (0x8000U) #define _MM_FLUSH_ZERO_ON (0x8000U) #define _MM_FLUSH_ZERO_OFF (0x0000U) #define _MM_GET_EXCEPTION_MASK() (_mm_getcsr() & _MM_MASK_MASK) #define _MM_GET_EXCEPTION_STATE() (_mm_getcsr() & _MM_EXCEPT_MASK) #define _MM_GET_FLUSH_ZERO_MODE() (_mm_getcsr() & _MM_FLUSH_ZERO_MASK) #define _MM_GET_ROUNDING_MODE() (_mm_getcsr() & _MM_ROUND_MASK) #define _MM_SET_EXCEPTION_MASK(x) (_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | (x))) #define _MM_SET_EXCEPTION_STATE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | (x))) #define _MM_SET_FLUSH_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | (x))) #define _MM_SET_ROUNDING_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | (x))) #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ __m128 tmp3, tmp2, tmp1, tmp0; \ tmp0 = _mm_unpacklo_ps((row0), (row1)); \ tmp2 = _mm_unpacklo_ps((row2), (row3)); \ tmp1 = _mm_unpackhi_ps((row0), (row1)); \ tmp3 = _mm_unpackhi_ps((row2), (row3)); \ (row0) = _mm_movelh_ps(tmp0, tmp2); \ (row1) = _mm_movehl_ps(tmp2, tmp0); \ (row2) = _mm_movelh_ps(tmp1, tmp3); \ (row3) = _mm_movehl_ps(tmp3, tmp1); \ } while (0) /* Aliases for compatibility. */ #define _m_pextrw _mm_extract_pi16 #define _m_pinsrw _mm_insert_pi16 #define _m_pmaxsw _mm_max_pi16 #define _m_pmaxub _mm_max_pu8 #define _m_pminsw _mm_min_pi16 #define _m_pminub _mm_min_pu8 #define _m_pmovmskb _mm_movemask_pi8 #define _m_pmulhuw _mm_mulhi_pu16 #define _m_pshufw _mm_shuffle_pi16 #define _m_maskmovq _mm_maskmove_si64 #define _m_pavgb _mm_avg_pu8 #define _m_pavgw _mm_avg_pu16 #define _m_psadbw _mm_sad_pu8 #define _m_ _mm_ #define _m_ _mm_ #undef __DEFAULT_FN_ATTRS #undef __DEFAULT_FN_ATTRS_MMX /* Ugly hack for backwards-compatibility (compatible with gcc) */ #if defined(__SSE2__) && !__building_module(_Builtin_intrinsics) #include #endif #endif /* __XMMINTRIN_H */